
These slides: https://www.grc.com/sqrl-presentation.pdf

Robust Pseudonymous Identity for the Internet

(A Practical Username & Password Replacement)

S Q R L

A simple, straightforward, open, intellectual property

unencumbered, easily explained, provably secure,
pseudonymous, 2-party, web domain based,
authenticated identity solution, including
complete identity lifecycle management…

Secure Quick Reliable Login

For the Internet.

Why SQRL will succeed

Truly Friction-Free Identity

Those who know SQRL believe it will succeed because, unlike
any and all other authentication solutions, using it is virtually
friction-free (which matters quite a lot) and it provides much
greater operational security than any other system. It is free
for everyone to use and relies upon no 3rd-party provider.

Why SQRL will succeed

• Supports a single master identity, for everything.

• Incorporates practical identity lifecycle management.

• Secure against website breaches (no secrets to keep).

• Minimal 2-party solution. No central third party to trust.

• Pseudonymous, unlinkable, prevents tracking.

• Simple, straightforward, open, non-proprietary & free.

• Provably secure, understandable & easily auditable.

• Most complexity resides in the client to ease server-side
development. Client and server code available and free.

• Plays well with others. Easily coexists with any other
identity/authentication solutions for low-friction adoption.

Pseudonymous Identity

• You are just a (very large) number.

• SQRL doesn’t know who you are, and neither does
any website you visit (unless you choose to tell it).

• For every website you visit, your single lifelong, SQRL
identity creates a static, unique, unlinkable, 256-bit
“token” which represents your identity at that site.

• After you have logged in traditionally, you “associate”
your unique SQRL token with your existing account.
This tells the site “this is who I am with SQRL, to you.”

• From then on, you may use SQRL to identify yourself to
login and approve other identity-dependent actions.

Here’s how the whole system works…

SQRL in a nutshell

After decryption with the SQRL password, the user’s identity
provides the key for an HMAC hash of the website domain to
produce an elliptic curve private key which signs every client
query, including a unique per-transaction nonce. The ECC
private key is transformed into a matching public key, which
provides the user’s per-website SQRL identity.

SQRL in a nutshell

• A user’s master SQRL identity is a randomly derived,
static, long-term, high entropy 256-bit token.

• This master identity keys an HMAC-256, which maps a
website’s domain name into a per-website elliptic curve
private/public key pair.

• The resulting public key identifies the user to the website.

• Users associate this public key with their existing identity

at a website and are subsequently identified by this public
key. We call this “creating a SQRL identity association.”

• Returning users must reassert their identity by signing a
server-supplied nonce with their matching private key.

What does this mean?

• User identities are per-site, pseudonymous & unlinkable.

• No per-site data needs to be stored by the SQRL client.

• The use of a unique nonce prevents any replay or reuse.

• No third party intermediary is required for authentication.

• Websites receive a public key that is only useful to them.

• The website’s public key can only be used to identify and
confirm a visitor’s identity. It cannot be used to assert an
identity.

• SQRL does not give websites any secrets to keep.

• SQRL’s server-side requirements could not be simpler:

• There is, of course, the need for SQRL protocol support
and many implementation details. But, the only server
cryptography required is signature verification!

The server’s role

• SQRL’s Service Provider API (available in open source “C”)
encapsulates ALL SQRL protocol details. It provides a
simple HTML query/reply protocol to dramatically simplify
SQRL’s addition to any existing web server platform:

SQRL’s Service Provider API

With the SSPAPI, SQRL authentication is as simple as 1 2 3:

1) Website’s SQRL-enabled logon page embeds URLs for a

SQRL button and QR code, which the SSP API provides.

2) Upon successful authentication, user’s browser jumps to
website URL with a token provided by the authentication.

3) Website queries SSP API with token to obtain the user’s
authenticated SQRL ID and, optionally, website account.

 The SSPAPI provides an “association database” to link
 SQRL users to website accounts. So not even the site’s
 database needs to be modified to accommodate SQRL.

SQRL’s Service Provider API

SQRL’s Service Provider API

Secure encryption of user data

• Security conscientious websites would like to securely
store user data without risk of post breach decryption.

• SQRL can (optionally) key an HMAC of a server-provided
token to return a unique, user and site-specific, static key
which can be used for server-side storage encryption.

Desktop & mobile modes

“Same Device” login: (desktop, laptop, or mobile)

• SQRL clients register the “sqrl” URL scheme and respond

when a user clicks the SQRL code in any local browser.

• The SQRL client receives the sqrl:// URL containing a
unique nonce. It converts the URL to https:// and queries
the website’s SQRL authentication service at that URL.

• Every SQRL client query includes the user’s public key
identity and is signed by the user’s private key for that
site.

• The site verifies the signature of all SQRL client queries,
performs any requested actions, and returns status to the
client.

Desktop & mobile modes

“Cross Device” login: (mobile –to–> desktop, laptop)

• SQRL can be used with camera-equipped devices to

securely authenticate its user to websites displaying a
SQRL code:

• The standard optical QR code encodes the same sqrl://
URL as its clickable link. The SQRL client contacts the
website’s SQRL authentication service and securely
asserts its user’s identity. The browser session is
transparently logged-in with no keyboard interaction.

The devil is in the details

We still need to authenticate the user to their device.

• SQRL becomes a proxy for the user’s identity, able to

assert it on their behalf. But this means we must
somehow protect against its abuse.

• We need simple, per-use, user re-authentication.

• Smartphone biometrics is convenient where available.

• GRC’s SQRL client allows the use of an abbreviated
password (“ShortPass”) for quick re-authentication
during the same sitting. This eliminates the annoyance
of frequent redundant re-entry of a long and secure
password during a single session.

The man-in-the-middle threat

• Online authentication systems are
inherently vulnerable to various forms
of MITM and spoofing vulnerabilities.

• The user believes they are logging into
an authentic website, but they are
logging into a spoofed website.

• They provide their identity credentials
(username and password – even TOTP
token in a real time attack – to an
imposter, who then logs in as them.

Defeating man-in-the-middle

• SQRL provides protection from all known forms of man-
in-the-middle attacks for same-device logon: when the
SQRL client resides in the same system as the browser.

• This is the most common authentication mode with a web
browser add-on or with a local client.

• SQRL’s cross-device (smartphone) authentication offers

some protection, but SQRL’s extremely robust “Client
Provided Session” (CPS) protection leverages the SQRL
client and web browser being on the same machine.

 Let’s examine each of the threats:

Defeating man-in-the-middle

Several MITM attacks are possible.
We will address each:

• An unwitting user visits a malicious website which invites

them to login with SQRL. But the SQRL URL they are
given is for “Amazon.com”, which the malicious site first
received from Amazon. If the user authenticates to that
SQRL URL, the malicious site’s session would be logged in
as the user.

• Since SQRL URLs are not user-readable SQRL prominently
displays the authentication domain to which the user is
authenticating. This protects the user from that simple
spoofing.

Defeating man-in-the-middle

• SQRL is IP-aware to prevent an attacker at a different IP
address from authenticating the user.

• The IP which requested a SQRL code is incorporated into
the SQRL session. The SQRL service provider compares
this IP with the subsequent SQRL client query IP and fails
the authentication (notifying the client) when the two do
not match. This robustly prevents an unwitting user from
authenticating a MITM located at a different IP.

• But… IP-based MITM mitigation will not detect the case
where an attacker can arrange to have the same public IP
as the user’s SQRL client. (Behind the same NAT router.)
So while this is very useful, it is, at best, a “mitigation.”

CPS: Client Provided Session

• With “Client Provided Session”
the user’s browser initiates an
authentication with the SQRL
client by jumping to localhost.

• The client authenticates to the
server and receives a valid URL
and logged-on session token.

• The client returns the token to
the browser by redirecting it to
the authentic website, thus
bypassing any MITM.

We’re getting there… But we still have a few problems to solve:

Creating a practical solution

• Without any 3rd party, the user has no recourse.

• There is no one they can go to for password recovery.
While this presents problems, it also makes SQRL vastly
more secure, since impersonation, social engineering, and
other attacks on password recovery are commonplace.
SQRL eliminates them all.

• “I forgot my password!”

• “I just changed my password, but I forgot the new one!”

• The whole point of SQRL is that websites can no longer
help. If they could… they could be hacked too.

• “Malware got into my machine and stole my SQRL ID!”

Introducing the “Rescue Code”

• SQRL needs a secure emergency recovery system.
A “get out of jail free card” that functions on the client
side without any 3rd party (because there is no 3rd party).

Identity Synthesis Process (performed once)

Introducing the “Rescue Code”

• SQRL identities carry the “root” identity encrypted by a
system supplied, maximum-entropy 24-digit “rescue
code” and, also, the derived master identity, encrypted
under the user-chosen (lower entropy) access password.

• This allows for the recovery of a forgotten password by
decrypting the root identity with the 24-digit rescue code.

• The rescue code is NEVER stored in any client. It always
remains offline and inaccessible to client compromise.

The Rescue Code

1484-3606-4253-9577-0233-6070
(sample)

• The rescue code is a maximum-entropy 24-digit key.

• Yes, it is annoying. But it is very rarely (if ever) needed.

• Most users will use SQRL throughout their lives without
ever needing their SQRL rescue code… even once.

• It is NEVER stored by any SQRL client. It must be written
down or printed, just once, when a SQRL identity is
created. It cannot later be recreated.

• In addition to enabling password recovery, the rescue
code enables some additional valuable capabilities. . .

SQRL’s Identity Lock

“Malware got into my phone and maybe stole my SQRL ID!”

“Big Brother had my phone and maybe got my SQRL ID!”

“I had to give someone access, now I need a new ID.”

• SQRL’s greatest strength is that everything flows from

a single master ID.

• SQRL’s greatest weakness is that everything flows from
a single master ID.

• SQRL’s “Complete identity lifecycle management” allows
secure identity rekeying if, for any reason, its user
believes their current identity may, for any reason,
no longer be secure or trusted.

SQRL’s Identity Lock

• A unique application of Diffie-Hellman key agreement:

• Given a public key one (PubKey1) & secret key one (SecKey1),
and public key two (PubKey2) & secret key two (SecKey2), then:

 DHKA(PubKey1, SecKey2) = DHKA(PubKey2, SecKey1)

SQRL’s Identity Lock Construction

IdentityLock := MakePublic(IdentityUnlock)

ServerUnlock := MakePublic(RandomLock)

DHKA(IdentityLock,RandomLock) = DHKA(ServerUnlock,IdentityUnlock)

VerifyUnlock := MakePublic(DHKA(IdentityLock,RandomLock))

Performed during identity creation

Performed to lock identity Performed to unlock identity

See: https://www.grc.com/sqrl/idlock.htm

SQRL’s Identity Lock

https://www.grc.com/sqrl/idlock.htm

SQRL’s Identity Lock

• The essential property of SQRL’s identity lock is:

Without the rescue code, SQRL clients only contain
sufficient information to create, but not to prove,
the additional cryptographic identity lock property.

• The SQRL identity’s rescue code (which no SQRL client
ever contains) is required to respond to a cryptographic
challenge presented by a website.

• Since the rescue code is never stored in any client, it
cannot be stolen and is never at risk from attackers.

SQRL’s Identity Lock

• After a SQRL identity has been associated with a website,
that association cannot be changed without the use of the
rescue code. This prevents an attacker who obtains
the user’s SQRL identity from changing an account’s
previously associated SQRL identity to lockout the user.

• Any user who believes their SQRL identity may have been

compromised can immediately lockout all SQRL login at a
site to prevent the use of their SQRL identity at that site.

• The rescue code is then required to either unlock and
re-enable SQRL login, or to re-key an existing SQRL
identity association for a website account.

• This allows SQRL users to “take back” a lost identity. . .

SQRL’s Identity Lock

• A user who somehow lost control of their identity could
quickly lock their most sensitive accounts, preventing
anyone - including themselves and any attacker – from
using SQRL authentication to login.

• At that point, only a SQRL client that has been
temporarily provided with the identity’s rescue code
can choose to unlock SQRL authentication at that site.

• However, most users would probably choose to rekey
and replace their compromised identity. . .

Rekeying SQRL identities

• SQRL’s identity rekeying relies
upon properties of the SQRL
identity storage format.

• An identity can carry from zero
to four previous identity keys.

• Since the master identity key
is derived from the identity
unlock key, the rescue code
can recover the master ID key.

• Either the user’s password, or
the rescue code, can decrypt
the block of previous unlock
keys.

Rekeying SQRL identities

Rekeying SQRL identities

• As shown in the previous diagram, a rekeyed identity
retains the previous identity’s Unlock Key in a four-deep
encrypted push-down list, accessible by either the user’s
password or the identity’s rescue code.

• This allows a single composite “identity” to retain
up to four previously retired identity keys.

• Since rekeying an identity should be a rare emergency
measure, retaining up to four previous identity keys
should protect against even catastrophic atypical misuse.

• The choice of 4 previous identities was arbitrary. Other
SQRL clients might choose to support a higher number.

Server-side rekeying

• When a SQRL user visits a website, their current identity
public key is sent, and its ownership is proved by signing
all query data with the matching (secret) private key.

• If the user’s SQRL identity contains one or more previous
identity keys, the most recent previous key is also sent,
and its matching private key also signs every query.

• The status returned from the server indicates its view of
the client’s identities, so the SQRL client will query with
successively older previous keys until it finds the one the
server recognizes.

• When a server recognizes a client by a previous key, the
server immediately updates to using the current key.

SQRL client-side key mgmt.

Thwarting offline attack

• The obvious (and only known) vulnerability remaining is
brute-force password cracking against a user’s typically
low-entropy access password.

• SQRL employs “EnScrypt”, a time-controllable, memory-
hard function which allows password decryption difficulty
to smoothly scale with processor performance:

Any required number of iterations

Federated (3rd-party) identity

Although SQRL is designed for secure 2-party identity
authentication, it can easily be extended to 3-party:

• SQRL’s Service Provider API can
be used, without modification,
to create a centralized identity
provider:

 identity.us.gov

• In this example, any number of
us.gov websites can use SQRL to
obtain a single universal common
identity for each SQRL user.

Improving real world security

These options request sites to disable traditional
low-security authentication recovery features:

• “Request disable non-SQRL login” (support optional)

An option in SQRL’s UI requests websites to disable non-
SQRL login. The site’s traditional username & password
login will not acknowledge this user’s (or any attacker’s)
login, even with the proper credentials.

• “Request no-recourse identity lock” (support optional)

An option in SQRL’s UI requests websites to disable any
“out of band” changes to this user’s SQRL identity.

The state of these options are sent with every SQRL query. Websites
should always capture and retain the last option settings received.

Convenience additions

• “ShortPass”
GRC’s client requires the user’s full password only once
per session. When the full password is provided, the first
“n” characters are used to re-encrypt the identity key in
RAM. During this sitting, the user may re-authenticate
using only those first “n” characters to decrypt the key.
If any mistake is made (a guess) in the short password,
RAM is wiped and the full password must be provided.

• Multiple identities per site
A user might wish to have additional identities for a
single site. SQRL allows a user-provided string to be
appended to the hashed domain name to synthesize
the per-site key. This creates any number of memorable
secondary identities per website.

Solving remaining problems

• Website’s domain name changes

Since SQRL identities are tied to the domain name,
what happens when an online property changes its
domain name?

SQRL identities can be migrated to a new domain
while the old domain remains available.

The new domain is tried first. It will increasingly
succeed as users are migrated to the new domain.

If the new domain fails, a SQRL URL for the retiring
domain is tried. If that succeeds, the user’s identity
for the new domain is updated from the old domain.

Solving remaining problems

• Shared access to a single online account

For example: A husband and wife might share access
to their banking site. How can SQRL provide this?

• This is currently provided for by the inherently weak
identity binding provided by password secrets.

• Although SQRL clients do allow multiple user identities
for multiple users, SQRL servers support a “many-to-
one” relationship (managed shared access) between
SQRL identities and web server accounts. This allows
both “mom and dad” to associate their individual SQRL
identities with their common online accounts.

• Thus, SQRL elegantly solves another common problem.

Managed Shared Access Demo

(Show everyone the MSA demo site. :)

Well tested off-the-shelf crypto

• All cryptographic primitives are available in the popular,
widely tested, multi-platform Libsodium library.

• Dan Bernstein’s Ed25519 elliptic-curve cryptosystem.

• Elliptic curve Diffie-Hellman (via a scalarmult on EC).

• Colin Percival’s Scrypt for “memory-hard” acceleration
resistant password-based key derivation.

• “EnScrypt”: SQRL’s deliberately time-consuming PBKDF2
construction, using XOR-sum chaining, with Scrypt as
its pseudo-random function, scales execution time
smoothly as processor performance increases.

• Miscellaneous standard crypto: SHA256, HMAC256, etc.

How does SQRL get adopted?

In so many ways it really is significantly superior to every
other existing solution:

SQRL requires a client and some initial one-time setup, but
after that nothing else is easier to use… or more secure.

How does SQRL get adopted?

• SQRL’s adoption is inherently very “low-friction.”

• A user only needs one SQRL client, and one identity,
created once, which can then be used everywhere it is
supported. Even if SQRL is not widely supported initially,
it is extremely secure, free, lightweight and compelling.

• Some sites need, and will appreciate, ultra-low-friction
account creation and robust identity authentication.

• Users will start asking non-SQRL sites to support SQRL.

• Adding server-side SQRL support is simple with the open
source SSP API requiring just a few REST HTTP queries.

• Most of the “heavy lift” work in SQRL is on the client,
which only needs to be implemented once.

How does SQRL get adopted?

• For the user, all of the work to setup SQRL is up front
and one time only… while they are excited by the idea
of never needing to worry about logging in again.

• After SQRL is setup once, it is the easiest-to-use identity
authentication system possible.

• How could it be easier? There is zero per-site work.
None. The user links their SQRL identity to a site, and
they are known to that site from then on.

• Websites can relax, since they are no longer being given
any secrets to keep. The public keys they have are only
meaningful at their domain, and can only be used to
identify and confirm a user’s identity at their domain.

In summary

• Supports a single master identity, for everything.

• Incorporates practical identity lifecycle management.

• Secure against website breaches (no secrets to keep).

• Minimal 2-party solution. No central 3rd party to trust.

• Pseudonymous, unlinkable, prevents tracking.

• Simple, straightforward, open, non-proprietary & free.

• Provably secure, understandable & easily auditable.

• Most complexity resides in the client to ease server-side
development. Client and server code available and free.

• Plays well with others. Easily coexists with any other
identity/authentication solutions for low-friction adoption.

These slides: https://www.grc.com/sqrl-presentation.pdf

