
Security Now! #831 - 08-10-21
Apple’s CSAM Mistake

This week on Security Now!
This week we look at a pervasive failure built into the random number generators of a great
many, if not nearly all, lightweight IoT devices. We look at some old, new and returned critical
vulnerabilities in major VPN products. And we encounter 14 fatal flaws in a widely used
embedded TCP/IP stack. We look at a number of terrific bits of feedback from our listeners. Then
we carefully examine the operation and consequences of Apple's recent announcement of their
plan to begin reacting to the photographic image content being sent, received and stored by
their iOS-based devices.

The more things change, the more they stay the same...

TomGerald / @TomGerald: @SGgrc as a follow up to last week’s picture.

Security News
“You're Doing IoT RNG”
In my favorite talk title of this summer’s DEF CON / BLACKHAT 2021, a pair of researchers from
Bishop Fox Labs titled their talk: “You're Doing IoT RNG”. They dug into the source of entropy
being used by some of today's most popular IoT platforms. And to say that they found it
wanting, would be an understatement. To get their audience's attention they began by noting:

“There’s a crack in the foundation of Internet of Things (IoT) security, one that affects 35 billion
devices worldwide. Basically, every IoT device with a hardware random number generator (RNG)
contains a serious vulnerability whereby it fails to properly generate random numbers, which
undermines security for any upstream use.”

Many years ago on this podcast, when we were laying the foundation of cryptography and the
requirements for securely encrypting both data at rest and data in flight—which is to say,
communications—we explained the importance of a high quality source of entropy. An example
is the often used Diffie Helman key agreement system where each side picks a number at
random, turns it into a key by performing some crypto math on it, then sends it to the other
side. They exchange these keys. The cool thing about this, which makes it so valuable for
securing communications, is that each side is able to take their originally chosen random
number, along with the key they received from the other party, and arrive at a new key. And
each end will arrive at that same new key. But the most critical aspect of this is that anyone
eavesdropping on that initial setup conversation who is able to observe and obtain the keys that
each side sends to the other, cannot recreate the key that the ends both share. This allows the
ends to then start using that key they now share for truly private communications.

What was the first thing each side did? They chose a random number. And it's crucial to the
security of the entire process that each side's chosen random number cannot be known or
guessed by anyone else. It must be truly random. But it turns out that it's much easier to specify
what we want from a random number than it is for a little computer sitting inside a light switch
or webcam to actually generate such a number. A random binary number is any string of bits of
some specified length, where the probability of each bit being a 0 or a 1 is exactly 50/50 and
that each bit is chosen completely independently of any other of the random bits. So that seems
easy to ask for. But software won't do that. It won't. Software is brutally deterministic. No
matter how much you add, subtract, multiply and divide, if you start from the same starting
point you're always going to arrive at the same ending point.

In order to break this deterministic cycle we need some external source of unpredictability. A
little so-called system-on-a-chip (SoC) probably has a radio for WiFi. So, if it was clever it might
hash the WiFi packets it's able to sniff buzzing around it, whether they're meant for it or not.
And if it was extra clever it might even tune its radio to different channels, or maybe listen to
the noise being generated by the cosmic background radiation—or what we commonly refer to
as "static". It might periodically sample the value of its hashing system, dumping the results into
a big pool of entropy. Then a CSPRNG—a cryptographically strong pseudo random number
generator—would take the pool's contents and use it for that system's keys.

Security Now! #831 1

But that's not the way things turned out. For one thing, many of these SoC's are very resource
constrained. They don't have enough extra RAM to even create a sufficiently large pool of
entropy. So the designers of the hardware said “we can do this in hardware” and built-in their
own source of entropy noise. One of the fundamental components of electronics is a diode. A
diode uses the properties of semiconduction to only allow an electric current to flow through it in
one direction. It strongly resists any current flow in the opposite direction. But there's a limit,
known as the diode's breakdown voltage, above which a diode will start to leak in its reverse
direction. And it turns out that as individual electrons valiantly tunnel their way through the
diode to emerge victorious on the other side, this breakdown current is quite noisy. It doesn't
have any sort of perfect 50/50 property. But it is utterly unpredictable when any given electron
is going to emerge from the reverse-biased diode. So it can serve as a starting point for the
SoC's full built-in hardware random number generator which will still need to do a lot of work on
those random events to make the result satisfy that simple definition we began with.

And this brings us to a crucial limitation of any hardware random number generator which is
operating in a resource constrained environment: It may be able to give you random bytes of
data, but not necessarily at the rate that you might want or need for your application. Software
generators can give you as much as you can take. But it won't be random. Hardware can
generate true randomness, but not very quickly. And this is why, in mature well-designed
systems, the two techniques are often combined. The hardware seeds and periodically re-seeds
a high quality software pseudo random number generator to give us the best of both techniques.

But it turns out that we're back to that resource constraint problem again and IoT hardware has
taken the shortcut of using a pure hardware generator with a limited rate of entropy generation.

Writing about the need for IoT devices to have entropy sources, Dan and Allan explain that “As
of 2021, most IoT systems-on-a-chip (SoCs) have a dedicated hardware RNG peripheral that’s
designed to solve exactly this problem. But unfortunately, it’s not that simple. How you use the
peripheral is critically important, and the current state of the art in IoT can only be aptly
described as “doing it wrong.”

Get a load of this: The researchers found example after example where the code that was calling
the hardware's built-in random number generator API always assumed that the API call
succeeded in providing them with the valid random data they had requested and never bothered
to check for the error status returned from the API stating that the request could not be met at
this time.

Now, if you think about it, the really tricky thing about this is that if you're asking for random
data, ANYTHING that is returned is valid, right? I mean, as unlikely as it might be, getting all 0's
back from a request for a completely random number would not be, itself, an error, since while
that would have been incredibly unlikely, it's possible.

If you don't deliberately check the success or failure status of a request for random data, you'll
still get data, but it might not be at all random. A Github search for this mistake being made in
IoT code based upon the MediaTek 7697 SoC HAL returned 3,218 hits. And a similar Github
search for mistaken use of the hugely popular FreeRTOS IoT operating system turned up 36,696
instances of improper use. As the authors wrote in their write-up where they show C-code
snippets:

Security Now! #831 2

“Notice that the return code is pervasively not checked – though this isn’t unique to these two
examples. This is just how the IoT industry does it. You’ll find this behavior across basically
every SDK and IoT OS.”

So as not to put any words in their mouth, I'm going to quote from their write-up under “What's
the worst that could happen?”

Okay, so devices aren’t checking the error code of the RNG HAL function. But how bad is it
really? It depends on the specific device, but potentially bad. Very bad. Let’s take a look.

The HAL function to the RNG peripheral can fail for a variety of reasons, but by far the most
common (and exploitable) is that the device has run out of entropy. Hardware RNG peripherals
pull entropy out of the universe through a variety of means (such as analog sensors or EMF
readings) but don’t have it in infinite supply. They’re only capable of producing so many
random bits per second. If you try calling the RNG HAL function when it doesn’t have any
random numbers to give you, it will fail and return an error code. Thus, if the device tries to
get too many random numbers too quickly, the calls will begin to fail.

But that’s the thing about random numbers; it’s not enough to just have one. When a device
needs to generate a new 2048-bit private key, as a conservative example, it will call the RNG
HAL function over and over in a loop. This starts to seriously tax the hardware’s ability to keep
up, and in practice, they often can’t. The first few calls may succeed, but they will typically
start to cause errors quickly.

So… what does the HAL function actually give you for a random number when it fails?
Depending on the hardware, one of the following:

● Partial entropy
● The number 0
● Uninitialized memory

As a consequence of this, the feeling of security we have is illusory. Oh yes, TLS. Yay! But if the
TLS handshake is based upon all-0 or static unchanging keys, then TLS is just adding a bunch of
connection overhead and not providing any true privacy.

As I've noted before, the entire world has rushed headlong into IoT without any standards, nor
anything like an Underwriters Laboratories for device security. The outside of the box says "uses
the most advanced military grade encryption"... but fails to mention that it also uses null crypto
keys. Whoops. Think that might matter?

The Pulse Secure VPN remains in trouble
As we know, abuse of VPNs and Microsoft's Remote Desktop Protocol (RDP) are currently two of
the most popular means for hackers to get into an enterprise's network. It's a problem when
valid username and password login credentials are obtained. As we know, these days such
credentials may find a ready market depending upon the value of the company they're
protecting. So this allows for targeted attacks. But it's much worse when the product itself has
exploitable vulnerabilities because then all users of the affected product will be open to
exploitation until an update has been made available and installed.

Security Now! #831 3

The Pulse Secure VPN has been in the news all year due to continuing problems with
vulnerabilities which are believed to have been leveraged as the way hackers conducted a
number of recent attacks. The Pulse Secure VPN is back in the news today because it's trying
again to fix a critical flaw that it first tried to fix last October. The trouble is a critical
post-authentication remote code execution (RCE) vulnerability which exists in their “Connect
Secure” VPN appliances. This flaw, CVE-2020-8260, was one of the four Pulse Secure flaws that
were being actively exploited by bad guys in April in a series of intrusions targeting defense,
government, and financial entities in the U.S. and beyond. Given the proven real-world
exploitation, it's strongly recommended that anyone using Pulse's Connect Secure (PCS) 9.1R12
or later should be certain to be current with all relevant updates.

Richard Warren with the NCC Group said on Friday: “The Pulse Connect Secure appliance suffers
from an uncontrolled archive extraction vulnerability which allows an attacker to overwrite
arbitrary files, resulting in Remote Code Execution as root. This vulnerability is a bypass of the
patch for CVE-2020-8260 [from last October]. An attacker obtaining such access will be able to
circumvent any restrictions enforced via the web application, as well as remount the filesystem,
allowing them to create a persistent backdoor, extract and decrypt credentials, compromise VPN
clients, or pivot into the internal network.”

This all occurred after Ivanti, Pulse Secure's publisher, published an advisory for six security
vulnerabilities on Monday, August 2nd. At that time Ivanti urged their customers to move quickly
to update to version 9.1R12 to secure against any exploitation of those flaws.

And Cisco, too...
Ivanti is not alone with their VPN troubles. Last Wednesday, Cisco released patches for two
serious flaws affecting many of their VPN products. The two security flaws are CVE-2021-1609 —
which has a CVSS of 9.8/10 — CVE-2021-1602 — with CVSS of 8.2/10. They were discovered in
the web-based management interfaces and are the result of improperly validated HTTP requests
and insufficient user input validation. And, being in the web management interface they result in
pre-authentication security vulnerabilities impacting multiple Small Business VPN routers and
allowing remote attackers to trigger a denial of service condition or execute commands and
arbitrary code on vulnerable devices.

The first flaw impacts RV340, RV340W, RV345, and RV345P Dual WAN Gigabit VPN routers.
The second flaw impacts RV160, RV160W, RV260, RV260P, and RV260W VPN routers.

When the Internet-facing remote management interface is enabled, both bugs are exploitable
remotely without requiring authentication as part of low complexity attacks that don't require
user interaction. Attackers could exploit the vulnerabilities by sending maliciously crafted HTTP
requests to the affected routers' web-based management interfaces. The good news is, those
remote management interfaces are disabled by default on all of those routers. On the other
hand, Cisco said that the web-based management interface for these devices is available
through local LAN connections by default and cannot be disabled there. So if a malicious attacker
were to briefly gain access to the internal network they might be able to exploit this vulnerability
on the LAN side web interface to, for example, create a persistent VPN account for themselves
that might go unnoticed until it was needed.

Security Now! #831 4

Cisco has released software updates to address these vulnerabilities and says no workarounds
are available to remove the attack vectors. Anyone having any of these Cisco VPN models should
immediately, at the very least, verify that WAN-side web management is disabled. It's under
“Basic Settings” > “Remote Management.” You'll want to be sure it's set to OFF!

Flaws found in another popular embedded TCP/IP library
14 newly disclosed vulnerabilities, collectively referred to as INFRA:HALT were discovered by the
work of a joint research effort by security teams at Forescout and JFrog. These vulnerabilities
impact an extremely popular TCP/IP library which is commonly used in industrial equipment and
Operational Technology (OT) devices manufactured by more than 200 vendors.

NicheStack is a proprietary TCP/IP stack developed originally by InterNiche Technologies and
acquired by HCC Embedded in 2016. The earliest copyright messages indicate that the stack was
created in 1996, although InterNiche was founded in 1989. The stack was extended to support
IPv6 in 2003. In the last two decades, the stack was distributed in several “flavors” by OEMs
such as STMicroelectronics, Freescale (NXP), Altera (Intel) and Microchip for use with several
(real-time) operating systems or its own simple RTOS called NicheTask. It also served as the
basis for other TCP/IP stacks.

Operational Technology or OT is not a term we've used before. NIST defines it as:
“Programmable systems or devices that interact with the physical environment (or manage
devices that interact with the physical environment). These systems or devices detect or cause a
direct change through the monitoring or control of devices, processes, and events. Examples
include industrial control systems, building management systems, fire control systems, and
physical access control mechanisms.” So what has traditionally been referred to as SCADA
(Supervisory Control And Data Acquisition) has now been broadened and formalized into
“Operation Technology” or OT for short.

The point is, these OT systems are at the heart of industrial control and monitoring. They are
increasingly networked. And now we learn that more than 200 vendors of these gadgets have all
been relying upon this “NicheStack” which provides a library of now known-to-be-vulnerable
TCP/IP networking functions. Forescout and JFrog have collectively named these vulnerabilities
INFRA:HALT because they allow for remote code execution, denial of service, information
leakage, TCP spoofing and DNS cache poisoning. These are not features we want in the
networked critical infrastructure monitoring and management devices being produced by more
than 200 different vendors.

And unlike our personal PCs and smartphones, these random faceless boxes buried behind
crates and in the closed and locked closets of industrial manufacturing facilities, are not
accustomed to be being updated regularly, if at all. If ever. The disclosing researchers explained
that “the nature of these vulnerabilities could lead to heightened risk and expose national critical
infrastructure at a time when the industry is seeing an increase in OT attacks against global
utilities, oil and gas pipeline operators as well as healthcare and the supply chain.”

All versions of NicheStack prior to v4.3 (the latest at the time of research), including NicheLite,
are affected. The patches released by HCC Embedded are available upon request. Rows are
colored according to the CVSS score: yellow for medium or high and red for critical.

Security Now! #831 5

In the DNSv4 component the researchers found that “The routine for parsing DNS responses
does not check the “response data length” field of individual DNS answers, which may cause
OOB-R/W.” This received a difficult-to-obtain CVSS score of 9.8.

In the HTTP module, “A heap buffer overflow exists in the code that parses the HTTP POST
request due to lack of size validation.” Okay, that’s just difficult to excuse. That’s SO basic. And
it’s worth a CVSS of 9.1.

Also in the DNSv4 code, “The routine for parsing DNS domain names does not check whether a
compression pointer points within the bounds of a packet, which leads to OOB-R.” I’ve written a
bunch of DNS parsing code since I have the DNS Benchmark and the DNS spoofability system.
So I know it pretty well. The guys who designed the DNS on-the-wire format were clever. They
realized that DNS packets would naturally contain a lot of redundancy. For example, when you
get a DNS answer it contains the DNS query too. So a single DNS packet might have answers for
grc.com, www.grc.com, forums.grc.com, sqrl.grc.com. Instead of wasting space for all of those
redundant “grc.com’s”, the DNS packet definition allows a DNS name prefix and then a pointer
to the rest of the DNS name. Since using a short pointer to point to a longer string compresses
the size of the packet, it’s referred to as a compression pointer. So, in this example the string
“grc.com” would only occur once in the DNS packet and everything else would contain a pointer
to that one instance rather than repeating it. So now we learn that this widespread and
pervasively used TCP/IP stack’s DNS parser “does not check whether a compression pointer
points within the bounds of a packet.” Again, how dumb is that? It’s just unconscionable.

And everyone’s using this code because, why not. It works, don’t it?

But wait, there’s more: “The routine for parsing DNS responses does not check whether the
number of queries/responses specified in the packet’s header corresponds to the query/response
data available in the DNS packet, leading to OOB-R.” I don’t think we’ve probably ever
encountered on this podcast a clearer example of code that was shipped because it worked with
no apparent thought whatsoever—not even one heartbeat—given to that code’s security.

And there’s 10 more vulnerabilities just like those.

If the earliest copyright carried by the stack is 1996 the code is 25 years old. So I could cut it
some slack. Afterall, the Internet’s original RFC’s don’t ever mention security at all. They specify
that a compression pointer will point to somewhere within the packet. It only makes sense and
will only work if it does. But it’s certainly insecure if it's allowed to point anywhere it wants to.
That’s just nuts in today’s world.

The researchers found a legacy website listing the main customers of InterNiche. According to
the website, most of the top industrial automation companies in the world use the stack. And in
addition to those, the website mentions another nearly 200 device vendors.

So the researchers queried Shodan looking for devices showing some evidence of NicheStack, for
example, application-layer welcome banners. On March 8th of this year they found more than
6400 devices NicheStack. Of those devices, the large majority (6360) run an HTTP server while
the others run FTP, SSH or Telnet servers.

Security Now! #831 6

http://www.grc.com

Talk about a target-rich environment. It’s good that this research was done. Now the NicheStack
has been significantly cleaned up. So all new code built using it will be much better than ever
before. But a massive amount of damage has already been done over the course of the past 25
years. There are countless “things” out in the world containing that stack, even if they aren’t
exposed to the public Internet. Conscientious state actors will have added these datums into
their comprehensive device vulnerability databases for the day when they have a need to
penetrate, or screw with, any of those millions of vulnerable gadgets having an old NicheStack
connected to the network.

Browser News
Microsoft Edge gets “Super Duper Secure Mode”
Yes, that’s actually what they're calling it because all of the serious names were apparently
taken. Actually, they realize full well that this is a humorous name and they do plan to find
sometime more befitting its seriousness if it takes hold.

So here's the sixty-four thousand dollar question which Microsoft's experimental Edge browser
“Super Duper Secure Mode” asks: Would you be willing to sacrafice some web browser
performance in return for potentially significantly greater security?

This is really interesting. Based upon an analysis of all Chrome/Chromium browser CVE's issued
since 2019, 45% of the vulnerabilities appearing in the Chromium project's V8 JavaScript and
WebAssembly engine were related to its Just-In-Time (JIT) component. And over half of ALL of
Chrome's bugs found being exploited “in the wild” are abusing JIT bugs.

This led Microsoft's Edge Vulnerability Research team to wonder what the impact would be of
just saying no to Chromium's JIT engine. And the result is Edge's new experimental “Super
Duper Secure Mode.” Johnathan Norman, Microsoft Edge's Vulnerability Research team Lead
observed that “This reduction of attack surface has potential to significantly improve user
security; it would remove roughly half of the V8 bugs that must be fixed. This reduction in attack
surface kills half of the bugs we see in exploits, and the bugs it doesn't kill become more difficult
to exploit. To put it another way, we lower costs for users but increase costs for attackers.”

And Microsoft acknowledges that this challenges some conventional assumptions held by many
in the browser community. Since the JIT engine is a Just In Time compiler implemented to
optimize performance, the immediate question that arises is “Okay, so more security. But at
what cost in performance?” That's really the question for us to answer. Johnathan said that
recent tests carried out by the Edge team have shown that despite its pivotal role in speeding up
browsers in the early and mid-2010s, JIT no longer appears to be a crucial feature for Edge’s
performance.

I think that's some very interesting out-of-the-box thinking. And it makes sense. Our systems'
processors have become so much more capable over the past 10 to 15 years that it's reasonable
to ask whether our browser's what have grown so fast that only a modest cost in performance
could buy us significantly greater security.

Security Now! #831 7

Microsoft said of the diagram above that most tests see no changes with JIT disabled. There are
a few improvements and regressions, but most tests remain unchanged. And they said that
anecdotally they found that users running with JIT disabled rarely noticed any difference in their
daily browsing behavior or speed. But how much variation did they see in the tests that did so
change? The chart below shows the average percentage improvement or regression in
performance.

Security Now! #831 8

Closing the Loop

BobSouthwell / @bobsouthwell

The 'Bobiverse'? Oh yes!!!!! But listen to the audiobooks, The voice characterizations are
wonderful. Very geeky cultural references!.

BobSouthwell @bobsouthwell — 12 Jun 2018

Last lines from Netflix movie "Anon": “I don't have anything to hide. I just don't have anything
I want you to see.” Brilliant summary of the whole privacy issue.

On TailScale:

Deacon D / @SoCalVistas
Hi Steve, I just want to send a BIG THANK YOU! For turning me on to Tailscale. Wow!!! I have
it running on 2 Synology NAS', 2 Windows boxes, and my Android phone. It's unbelievably
easy, and like they say, it just works. :-)

Matt Vest / @mvest20
@SGgrc Thank you so much for bringing @Tailscale to my attention! I just set it up - it took
about 15 minutes to get it working the way I want, no firewall or port configuration effort, and
it works flawlessly. Exactly what I’ve been looking for.
James P (he/him) / @jpancoast
.@SGgrc Setting up @Tailscale was so damn easy it was scary.

Marko Simo / @m_simo
Many thanks to @SGgrc for letting us SN listeners to know about @Tailscale. I have now
replaced my OpenVPN with it and it blows my mind. I think this must be the future of private
networking, not just virtual, but ALL private networking.🙌

Philip Hofstetter / @pilif
@SGgrc re the hosts file entry of you eCommerce provider: You talked about adding that entry
on the show back in 2016 ?? https://www.grc.com/sn/sn-583.htm

October 25th, 2016 — We were covering a major DNS outage I wrote:

My own intersection with last week's problem was when I received, at about 7:30 in the
morning, an iMessage from Sue, my bookkeeper. She had been away from the office for about
a week, traveling with her laptop and checking-in constantly to deal with any sales grc-related
mail stuff. And she sent me a note saying that Eudora - yes, we're all still using Eudora - was
returning "GRC.com address not resolved" error. And I thought, whoa, that's odd. And so I
shot her a text note back and said that doesn't really sound like our problem, but I'll look into
it.

Security Now! #831 9

https://www.grc.com/sn/sn-583.htm

And then, like maybe two hours later, I got an alert saying that one of GRC's eCommerce
transactions had failed. So then I started seeing the news about a major DNS-related outage.
And that put all the pieces together for me. That explained why Sue, wherever she was,
whatever DNS server her location was using, was unable to obtain the IP for GRC. And
suddenly I thought, ah, I'll bet that's what's happening because of the coincidence that GRC's
eCommerce system was unable to obtain the IP for the merchant gateway. But I was able to
get it from here as a Cox cable subscriber.

So I looked up the IP, jumped over to GRC's server to drop an entry into the hosts file. And
what I found, interestingly, was I had already commented out the line I was going to put in. In
other words, this had happened previously. So all I did was remove the pound sign from that
line because the IP had not changed from whenever it was I had done that before. And then
immediately eCommerce transactions started to process again.

(This was the large DYN DNS outage.)

Apple’s CSAM Mistake
“CSAM Detection” vs “Communication safety in Messages”
There are two completely different systems here and because they've been announced together
they are being muddled and confused. There's one system called “CSAM Detection” and an
entirely different system which Apple refers to as “Communication safety in Messages”. I’m
going to first briefly describe each of the two systems, then Leo, let's talk about the various
social controversies surrounding them.

Okay. The intent of Apple's “CSAM Detection” system is expressly and only for keeping Child
Sexual Abuse Material — C.S.A.M. — out of Apple's iCloud facility. This is done by cross checking
the image hashes of any image bound for iCloud against an archive of known illegal and child
abusive material. Since the user's iOS device encrypts images before they're uploaded to iCloud,
this image hashing and known image archive comparison must all occur before the encryption,
in other words, on the user's device.

Some people have freaked out, wrongly believing that Apple will be loading the abusive images
onto everyone's phones for comparison. But on this podcast we understand what it means to
“hash” something. It's an extremely information lossly process that creates a fingerprint of
something. In this case it's a fingerprint of a known illegal and abusive image. But in no way is it
the image itself. Apple calls this form of image hashing “NeuralHash” and describes it this way:

The hashing technology, called NeuralHash, analyzes an image and converts it to a unique
number specific to that image. Only another image that appears nearly identical can produce
the same number; for example, images that differ in size or transcoded quality will still have
the same NeuralHash value.

Security Now! #831 10

So, here are the properties of the system as Apple describes them:

“CSAM Detection” enables Apple to accurately identify and report iCloud users who store
known Child Sexual Abuse Material (CSAM) in their iCloud Photos accounts. Apple servers flag
accounts exceeding a threshold number of images that match a known database of CSAM
image hashes so that Apple can provide relevant information to the National Center for Missing
and Exploited Children (NCMEC). This process is secure, and is expressly designed to preserve
user privacy.

CSAM Detection provides these privacy and security assurances:

● Apple does not learn anything about images that do not match the known CSAM database.

● Apple can’t access metadata or visual derivatives for matched CSAM images until a
threshold of matches is exceeded for an iCloud Photos account.

● The risk of the system incorrectly flagging an account is extremely low. In addition, Apple
manually reviews all reports made to NCMEC to ensure reporting accuracy.

● Users cannot access or view the database of known CSAM images.

● Users cannot identify which images were flagged as CSAM by the system.

The technical details of how Apple pulls this off are very cool and they are not at all
controversial. But this week, Leo, I want to discuss the sociological controversies surrounding
Apple's stated plans. For now, we're going to assume simply that Apple is able to do this and to
provide the various blinding guarantees that they claim. I'm sure they are. And once I have dug
into them and understand how they're pulling this off, if it still seems relevant next week, we'll
do a technical deep dive into the technology.

Okay. So that was “CSAM Detection.” The other completely separate new feature is known as
“Communication safety in Messages”:

Communication safety in Messages gives parents and children new tools to help protect children
from sending or receiving sexually explicit images through any Apple messaging. It’s a pre- and
post- message image filter. It operates only on images sent or received over a messaging
channel and only for child accounts set up by parents in Family Sharing. Anthony Weiner’s
sexting would not have set off this system—but only because he wasn’t a minor at the time. The
new system performs the image analysis using algorithms on the device itself, pre- or
post-encryption, so it does not change the privacy assurances of Messages. When a child's
account sends or receives an image, which the iOS device detects and believes to be sexually
explicit, the image will be blurred and the child will be warned that their device believes that the
image might be inappropriate. And the child will be reassured that it is okay if they do not want
to view or to send the photo. So this will dissuade children from sending images that the device
believes to be sexually explicit, and it will warn children on the receiving end of such images
before they are seen. As an additional precaution, younger children of age 12 or below can also
be told that, to make sure they are safe, their parents will get a message if they DO choose to

Security Now! #831 11

proceed to view or send the image. Older children of ages 13 to 17 will be warned, but no
parental notification will occur.

And this entire system is only available for accounts set up as families in iCloud and the parent
or guardian must opt-in to enable the feature for their family group. And as I noted above,
parental notifications can only be enabled by parents or guardians for child accounts age 12 or
younger.

Okay. So that's the system. What problems and concerns does this create?

Security Now! #831 12

