Security Now! #991 - 09-10-24
RAMBO

This week on Security Now!

Microsoft's “Recall” uninstallability is a bug. Yubikeys can be cloned. How worried should you be?
When was that smoke detector installed? We share and discuss lots of interesting listener
feedback: Is whatsApp more secure than Telegram? Does Telegram's lack of security really
matter? Elevators in Paris have problems, too. There's a 4th credit bureau to be frozen, too. Can
high pitched sound keep dogs from barking? A reminder of a terrific UNIX 2038 countdown clock.
A new Bobiverse Sci-Fi book & new Peter Hamilton novel. Why does SpinRite show user data
flashing past? And... TEMPEST is alive and well in the form of the latest RAMBO attack.

The very definition of “"Form over Function”
Note the extra bars on the exterior of the gate to
prevent anyone from sneaking around it! Right.

b 2/
ko L /"‘ /

Security News

Offer to uninstall Recall was a bug, not a feature

The Verge carried some news that really makes you wonder what’s going on at Microsoft. Their
headline read: “Microsoft says its Recall uninstall option in Windows 11 is just a bug” - in other
words, don’t get your hopes up that we're going to allow our illustrious forthcoming “Recall”
feature to be removed from Windows - that was a bug, not a feature. The Verge writes:

While the latest update to Windows 11 makes it look like the upcoming Recall feature can be
easily removed by users, Microsoft tells us it’s just a bug and a fix is coming. Deskmodder
spotted the change last week in the latest 24H2 version of Windows 11, with KB5041865
seemingly delivering the ability to uninstall Recall from the Windows Features section.

I\ Windows Features — O X

Turn Windows features on or off @

To turn a feature on, select its check box. To turn a feature off, clear its check
box. A filled box means that only part of the feature is turned on.

= @ Print and Document Services
Recall
Remote Differential Compression API Support

=

Services for NFS

Simple TCPIP services (i.e. echo, daytime etc)
SMB 1.0/CIFS File Sharing Support
SMB Direct

Telnet Client

TFTP Client

Virtual Machine Platform

Windows Hypervisor Platform
Windows Identity Foundation 3.5

= & Windows PowerShell 2.0

[]' Windows Process Activation Service

&)

doogdsudUue -

I have a picture of the "Windows Features” dialog in the show notes and there it is, right
underneath “Print and Document Services” and above “"Remote Differeential Compression API
Support” — “Recall”. It's currently checked showing that it’s installed and offering to be
unchecked and thus removed. But no, that’s a bug!

In a statement to The Verge, Windows senior product manager Brandon LeBlanc said: "We are
aware of an issue where Recall is incorrectly listed as an option under the ‘Turn Windows
features on or off’ dialog in Control Panel. This will be fixed in an upcoming update.”

The Verge goes on to tell us much of what we already know, which is to say why many of us
would wish that checkbox would remain. But The Verge also adds a bit of news. They wrote:

The controversial Recall Al feature, which creates screenshots of mostly everything you see or
do on a computer, was originally supposed to debut with Copilot Plus PCs in June. Microsoft
was forced to delay the feature after security researchers raised concerns. Microsoft says it
remains on track to preview Recall with Windows Insiders on Copilot Plus PCs in October, after
the company has had more time to make major changes to Recall.

Security researchers initially found that the Recall database that stores the snapshots of your
computer every few seconds wasn'’t encrypted, and malware could have potentially accessed
the Recall feature. Microsoft is now making the AI-powered feature an opt-in experience

instead of on by default, encrypting the database, and authenticating through Windows Hello.

We did ask Microsoft whether it will allow Windows users to fully uninstall Recall, as this
appearance in the Windows features list suggests, but the company only confirmed this was
just “incorrectly listed” for now. It’s possible that Microsoft may need to add a Recall uninstall
option to EU copies of Windows 11 to comply with the European Commission’s Digital Markets
Act. Microsoft has already had to add an uninstall option for Edge in European Economic Area
(EEA) countries, alongside the ability to remove the Bing-powered web search in the Start
menu.

And really, when you think about it, what does it mean that Windows has a feature that presents
a clear and present privacy and security danger to all of its users, which Microsoft knows full well
many of its users feel extremely uncomfortable about. And where it's obvious that that feature
could be readily removed from Windows... but Microsoft refuses to allow their users to do so.

One thing that means for certain, is that GRC’s forthcoming freeware which will totally neuter
and remove Recall, promises to be quite popular.

YubiKeys can be cloned

I probably received as many pointers to the recent Yubikey exploit stories from our listeners as I
did to the news of the new RAMBO attack. This is, of course, due to the fact that Yubico largely
credits me, thanks to the listeners of this podcast, with discovering them at an RSA conference
where I met Yubico’s primary mover, shaker and co-founder, Stina Ehrensvard, and then with
putting them on the map and getting them going. It’s clear that this would certainly have
happened for Yubico sooner or later (and probably sooner). It was just fortune that I happened
to be someone with a microphone who recognized the cleverness of what they had created.

ArsTechnica’s headline about the recent discovery was: "YubiKeys are vulnerable to cloning
attacks thanks to newly discovered side channel” and their sub-head reads: "Sophisticated
attack breaks security assurances of the most popular FIDO key.”

The researchers at NinjaLab, who performed the research and earlier informed Yubico of their
findings, wrote:

In the present work, NinjaLab unveils a new side-channel vulnerability in the ECDSA [Elliptic
Curve Digital Signature Algorithm] implementation of Infineon 9 on any security
microcontroller family of the manufacturer. This vulnerability lies in the ECDSA ephemeral key
(or nonce) modular inversion, and, more precisely, in the Infineon implementation of the
Extended Euclidean Algorithm (EEA for short). To our knowledge, this is the first time an
implementation of the EEA is shown to be vulnerable to side-channel analysis (contrarily to the
EEA binary version). The exploitation of this vulnerability is demonstrated through realistic
experiments and we show that an adversary only needs to have access to the device for a few
minutes. The offline phase took us about 24 hours; with more engineering work in the attack
development, it would take less than one hour.

After a long phase of understanding Infineon implementation through side-channel analysis on
a Feitian 10 open JavaCard smartcard, the attack is tested on a YubiKey 5Ci, a FIDO hardware
token from Yubico. All YubiKey 5 Series (before the firmware update 5.7 11 of May 6th, 2024)
are affected by the attack. In fact all products relying on the ECDSA of Infineon cryptographic
library running on an Infineon security microcontroller are affected by the attack. We estimate
that the vulnerability exists for more than 14 years in Infineon top secure chips. These chips
and the vulnerable part of the cryptographic library went through about 80 CC certification
evaluations of level AVA VAN 4 (for TPMs) or AVA VAN 5 (for the others) from 2010 to 2024
(and a bit less than 30 certificate maintenances).

In his reporting of this, Dan Goodin, writing for ArsTechnica notes:

The attacks require about $11,000 worth of equipment and a sophisticated understanding of
electrical and cryptographic engineering. The difficulty of the attack means it would likely be
carried out only by nation-states or other entities with comparable resources and then only in
highly targeted scenarios. The likelihood of such an attack being used widely in the wild is
extremely low. Roche said that two-factor-authentication and one-time password
functionalities aren't affected: because they don't use the vulnerable part of the library.

Tuesday's report from NinjaLab outlines the full flow of the cloning attack as:

e The adversary steals the login and password of a victim’s application account protected
with FIDO (e.g., via a phishing attack).

e The adversary gets physical access to the victim’s device during a limited time frame
without the victim noticing.

e Thanks to the stolen victim’s login and password (for a given application account), the
adversary sends the authentication request to the device as many times as is necessary
while performing side-channel measurements.

e The adversary quietly gives back the FIDO device to the victim.

e The adversary performs a side-channel attack over the measurements and succeeds in
extracting the ECDSA private key linked to the victim’s application account.

e The adversary can sign in to the victim’s application account without the FIDO device and
without the victim noticing. In other words, the adversary created a clone of the FIDO
device for the victim’s application account. This clone will give access to the application
account as long as the legitimate user does not revoke its authentication credentials.

The list, however, omits a key step, which is tearing down the YubiKey and exposing the logic
board housed inside. This likely would be done by using a hot air gun and a scalpel to remove
the plastic key casing and expose the part of the logic board that acts as a secure element

storing the cryptographic secrets. From there, the attacker would connect the chip to hardware
and software that take measurements as the key is being used to authenticate an existing
account. Once the measurement-taking is finished, the attacker would seal the chip in a new
casing and return it to the victim.

And to put this into context, Dan adds...

The attack and underlying vulnerability that makes it possible are almost entirely the same as
that allowed NinjaLab to clone Google Titan keys in 2021. That attack required physical access
to the token for about 10 hours.

The attacks violate a fundamental guarantee of FIDO-compliant keys, which is that the secret
cryptographic material they store can’t be read or copied by any other device. This assurance
is crucial because FIDO keys are used in various security-critical environments, such as those
in the military and corporate networks.

That said, FIDO-compliant authentication is among the most robust forms of authentication,
one that’s not susceptible to credential phishing or adversary-in-the-middle attacks. As long as
the key stays out of the hands of a highly skilled and well-equipped attacker, it remains among
the strongest forms of authentication. It’s also worth noting that cloning the token is only one
of two major steps required to gain unauthorized access to an account or device. An attacker
also must obtain the user password used for the first factor of authentication. These
requirements mean that physical keys remain among the most secure authentication methods.

To uncover the side channel, the researchers reverse-engineered the Infineon cryptographic
library, a heavily fortified collection of code that the manufacturer takes great pains to keep
confidential. The detailed description of the library is likely to be of intense interest to
cryptography researchers analyzing how it works in other security devices.

So what we have here is Yubico in the spotlight only because it’s by far the most successful and
well known user of high-security token hardware that, despite many previous reviews and
extensive analysis by the industry, was finally found to have an extremely subtle flaw that could
be used to extract its secrets — and even and only then, through the use of quite high-end
expensive engineering equipment, including the need to physically compromise and crack open
the key.

And even then, the attacker would still need knowledge that only the key’s legitimate owner and
user probably possesses.

Infineon has fixed their problem with a firmware update but in the interest of security, Infineon’s
firmware is not field upgradeable. So Yubico has obtained the improved hardware from Infineon
and is now offering keys that have this fixed. Whether or not anyone should or would bother to
update is up to them. But this attack seems so far-fetched, and is so far out of the realm of ever
happening to anyone - and, after all, we’re just using the keys to contain additional factors of
logon credentials - that I can’t imagine that this is worth another thought.

Our picture of the week, podcast before last, was that signage which was intended to have its
blank field proudly filled-in with the date since there had last been any sort of accident on the
job. But instead, it cited that they’d had no accidents since someone (whom everyone
presumably knew) had left the job. I recalled that we’d had a similar non-sequitur once for our
picture of the week in the form of a close-up photo of a smoke alarm that also had a blank space
where its installer was expected to fill in a date... but during the podcast I was unable to recall
what had been written there instead. One of our listeners whose online moniker is *Mr Nobody
2" was kind enough to remind me:

The smoke alarm had a field where its installation date meant to be filled-in by its installer. So it
said: “Installed On:” followed by a blank space. In this case, the person filled the information in
so that it read: “Installed On: The Ceiling.”

This week there was not a huge amount of news. And I got caught up in the terrific listener
feedback that I'd been receiving. Many years ago we used to deliberately alternate between
security news and listener feedback episodes. We've dropped that approach in favor of always
doing some of both, but this week we’re going to spend more time over on the feedback side.

I should note how pleased I am with the way GRC’s email system has worked out. The nature of
the feedback by email is different from Twitter and having it in my email client makes it
significantly easier to manage. So I'll remind everyone that in order to send feedback to me at
the email address “securitynow@grc.com” you need to register your sending email address with
GRC. You do not need to subscribe to any of the three mailing lists that you’ll find there. Just
being registered allows my system to prevent all incoming spam. But I'm also hearing from
many of our listeners who really appreciate receiving the weekly show title, summary, picture of
the week and show notes link by mail every Tuesday morning before the podcast. So subscribing
to the Security Now! List will automatically make that happen for you.

Okay...

Angus MacKinnon

Steve: I see on WhatsApp all the time your messages are encrypted. Is Whatsapp secure? I
thought WhatsApp had Signal embedded.

Last last week’s podcast was all about the fact that Telegram - which claims security and boasts
of its reputation for security — was not truly offering end-to-end messaging encryption, with the
single exception that two — and exactly and only two - parties who were both online at the same
time could deliberately enable point-to-point encryption for their conversation. So I'm sure that
Angus just wanted some assurance that WhatsApp’s similar claim of encrypted messaging is
actually legitimate. And as he noted, since WhatsApp is based upon the open Signal protocol, all
messaging is always fully encrypted, even in multi-party groups. In fact, there’s no way to use
Signal in any unencrypted mode.

mailto:securitynow@grc.com

Andy Pastuszak shared some useful points which he feels favors Telegram:

Steve, I'm a user of Telegram as well as Signal. The definition of anything less than end-to-
end encryption as not being true encryption would make a LOT of services not encrypted, even
outside the messaging space.

There are almost no cloud providers that offer true end-to-end encryption. Dropbox, OneDrive
and Google Drive don’t. Online calendar, todo lists and note taking apps don’t really either.
And the ones I find that do, charge A LOT for the privilege. Some of the end-to-end encrypted
note-taking apps I looked at charge well over $100/year for their basic plan.

Telegram is obviously NOT e2e encrypted. But it is encrypted in transit and encrypted at rest.
For the things I use Telegram for, all I really need is encryption in transit. If I really need
end-to-end encryption, then I use Signal.

The other nice thing about Telegram is how group chats work. How many times have you been
part of a group SMS text, and ask to be removed from it. And that works great until someone
responds to an old message that you’re still included on, and then all of the sudden, you're
part of the conversation again. With Telegram, you leave a group chat/channel, you’re gone till
you rejoin.

And Telegram fully support Siri and CarPlay. I can easily say "Hey Siri, send a Telegram
message to Joe” while driving and it will happily do that. Signal does not have Siri or CarPlay
support yet. So if you want something better than SMS, with Siri and CarPlay/Android Auto
support and you’re aware of the encryption limitations, Telegram is an excellent choice.

I agree with Andy that true end-to-end encryption is rarely needed or necessary. I use iMessage
among my iPhone-using friends. As we know, its encryption is what Matthew Green described as
modern state-of-the-art. But the messages are about what time we’re meeting for dinner or
whether they saw some random piece of news. Hardly anything that would ever be of interest to
anyone else.

Andy is obviously a sophisticated user who understands exactly what’s going on; so there’s
nothing to disagree with him about. One of the points of his sophistication is that he knows that
when he truly needs end-to-end encryption it’s time to switch to Signal for that. But a big part of
what Matthew Green wanted to convey - although it was read by people like us, so it didn't
come as a huge surprise — was that the typical Telegram user was extremely unlikely to have
any such sophistication and thus appreciation of the distinction. So Matthew told us that he was
growing increasingly annoyed as the years rolled by with Telegram not making any significant
improvements to the security of their messaging technology while essentially riding on the coat-
tails of all of the other fully end-to-end encrypted messaging platforms, all the while claiming
privacy parity while choosing to not actually offer it.

John Hickin

Steve, we rented an apartment in Paris where a sign was present in the elevator (but in French
of course). It was put up by owners who were annoyed when renters (AIRBNB) forgot to close
the outer door after leaving the elevator, thus rendering it stuck in place so nobody on any
other floor could recall and use it. Cheers, John.

I enjoyed John’s note which related, of course, to last week'’s picture of the week which
suggested that if the elevator didn’t "go” its occupants might try jumping up and down a bit,
presumably to let it know they were present - although one would imagine that pressing a floor
button would serve that purpose. Apparently, in Paris today, they’re still using those quaint
elevators where its user first closes an outer door on the floor, remains on the floor to close off
the elevator shaft and the elevator is only responsible for closing and opening its own carriage
door. So, as John notes, if people leaving an elevator leave the outer floor door open with the
elevator unable to close it, the elevator is unable to budge without leaving the elevator shaft
open when the carriage has left.

Craig Taylor

Hi Steve, Long time listener. I wanted to provide you with some additional information on the
article you cite for Freezing Credit in the NDP breach. The article you reference for Freezing
credit only mentions 3 of the 4 major credit bureaus at which you need to freeze your credit.
Innovis is missing from that article. Our article at CyberHoot has a collection of many of the
primary and secondary credit bureau's. https://cyberhoot.com/cybrary/identity-theft

Great coverage and thanks for doing what you do!

Craig is a co-founder of CyberHoot and the page he linked to does, indeed, provide more
comprehensive coverage of the various credit bureaus with links to each bureau’s individual
credit freeze resources page. The GRC shortcut “"npd” for checking the NPD breach database
received the largest number of referring clicks ever, and GRC'’s “credit” link to the investopedia
page is next in line, just behind it, in 2nd place runner up position. So I know this topic is, not
surprisingly, of significant interest to this podcast’s listeners. Since I want to make Craig’s more
comprehensive listing of credit bureau credit freeze links readily accessible, I've created another
GRC shortcut, this one is “freeze” which points to Craig’s excellent page about identity theft. So

the link is: grc.sc/freeze.

Since I had only previously frozen my credit at the big 3 - TransUnion, Experian and the
infamous Equifax — I immediately used the new link to Craig’s page to find the link to Innovis,
went there and froze my credit. To Innovis’ credit (pardon the pun), it was the easiest of any of
the freezing experiences. No need to create any account. You just fill out an online form
(containing all of the data that’s already public in the breach) and your credit is immediately
frozen against anyone’s inquiry. Innovis then sends, by postal mail, a credit freeze confirmation
letter which contains a 10-digit PIN. That PIN can subsequently be used to manage your freeze
status at Innovis. It was so quick and easy that I cannot imagine why anyone who cares about
this would not do it. So, again, the GRC shortcut to get to Craig’s page at CyberHoot is

grc.sc/freeze.

And I should mention that Craig’s quite comprehensive page mentions an additional five lesser
bureaus which also offer credit freezing. I didn’t bother with them, but if you want to be fully
covered you may wish to. And Craig, thanks very much for bringing this additional major bureau
to our listener’s attention. Much appreciated!

https://cyberhoot.com/cybrary/identity-theft/
https://grc.sc/freeze
http://grc.sc/freeze

Adam Tyler

Hi Steve, I was curious if you or a listener have found a commercial version of the portable
dog killer device? I'm not really looking for a laser gun, but something that could sit on the
fence line to deter a barking dog. Ideally automatically activated and a battery design that
made sense. Lithium ion with a little solar panel would be sweet. Anyway, love the podcast,
glad you are going past 999. I also only had an X/Twitter account to DM you and am very
happy to see you've moved over to email. Regards, Adam Tyler

Adam is, of course, referring to one of this podcast’s favorite past episodes which we’ve re-aired
a number of times through the years because it tells a fun story which ends with a moral of the
surprising benefits that can arise from being active rather than passive. I first shared that
youthful adventure on the occasion of the 50 anniversary of the laser. The device I desighed and
built when I was in high school was not a laser, though the beam of high intensity directed sound
energy it produced was likely coherent.

Twelve years ago, back in 2012 when this podcast was only 7 years old, I recreated that device
after so many of our listeners commented that their neighbors’ barking dogs were ruining their
lives. Since I didn’t have the web forum technology running that I have today, I created a
Google group called “Portable Sound Blaster” for public discussion of this, and I published the
final electronic design of the device on a page at GRC, naming the project "The Quiet Canine.” If
you're curious, you can find it under GRC’s website menu under “Other” and “The Quiet Canine”.
https://www.grc.com/tqc/TheQuietCanine.htm

On that page I wrote: "The good news is that we arrived at an extremely simple, inexpensive,
and easy-to-build design for a small, lightweight and painfully loud handheld sound emitter.”
And then the page shows the design. But then, under the caption "The Bad News” I wrote:

"Many of these final "TQC v2.2.2” devices were assembled and tested by those following and
participating in the Portable Sound Blaster group at Google. The devices were invariably
incredibly loud and high pitched. While their dads were assembling and testing the devices
downstairs in the garage, their upstairs teenagers were complaining about the piercing sound
penetrating their heads. And, of course, dogs were at least as well able to hear it, and at much
greater distance.

But in no event was this able to function as any sort of barking deterrent. Dogs heard it, and at
any distance, they didn't care. We soon came to appreciate that my own original “point blank”
blasting of the original “Portable Dog Killer” (as I named my first device when I was in high
school) was required for the device's effectiveness. No dog next door, let alone down the block,
will care about a high pitched sound. It needs to be blasted directly into the dog's face at a very
short distance.

This means that while this device would not be useful for silencing dogs at a distance, it would
likely be extremely useful and effective as a personal defense device for walkers, postal workers
on foot and joggers who are harassed and threatened by overly aggressive canines on the loose.
Although we cannot and do not offer any specific guarantees, it is difficult to see how any
attacking dog would not be stopped in its tracks by a close blast of incredibly loud and high
pitched sound.”

https://www.grc.com/tqc/TheQuietCanine.htm

So the bottom line is, my particular use-case turned out to be unique. I designed and used the
first device back in the early 1970’s specifically to train an incredibly aggressive dog not to jump
on the fence bordering the sidewalk which was terrifying passers by and causing them to fall off
the sidewalk into the street. And as we know, it also had the side effect of altering the flight path
of seagulls at a distance. But what it has never succeeded in doing, to my knowledge, is
silencing any barking dogs; in fact, it probably encourages their barking.

All that said, thanks to this history, I occasionally receive email from listeners who stumble upon
commercial solutions claiming to solve this problem. I never pay them any attention, so I have
not gathered any links or referrals since I'm skeptical that any of them do anything to solve the
problem. So, sharing that story was a lot of fun, as was recreating a super-loud high frequency
sound generator. Mostly though, I learned just how much upset barking dogs are causing today.
I wish I could offer a solution.

John,

Hey Steve, I stumbled across this very cool looking hexadecimal clock face with ticking hands
showing the time in the venerable Unix time, and thought you, Leo and the rest of the
listeners would love to see too. Check it out at https://retr0.id/stuff/2038/

All the best to 999 and well beyond, John

So, we have previously encountered this wonderful version of the UNIX clock. Thinking that I
would probably have created a GRC shortcut for it previously, and I found it created almost
exactly two years ago on September 18th, 2023. And the shortcut itself is, not surprisingly,

“2038"” so: grc.sc/2038.

UNIX time is represented by a 32-bit signed integer which has been incrementing once per
second since midnight of January 1st, 1970. In what’s known as signed two’s complement
format, the most significant bit of a number’s binary representation is reserved for the number’s
positive or negative sign, with the bit set to ‘1’ for negative numbers. This works out naturally
when doing 2’s complement binary math, which is the system used by all contemporary
computers. For example, subtracting 10 from 5 should produce negative 5, and that’s what
happens if negative values have their high bit set. However, UNIX time could and arguably
should have been defined as an unsigned 32-bit integer since it was meant to be used for
timekeeping into the future, not the past. But as it is, the result of UNIX time being a signhed
value means that negative values represent times before 1970, extending back to 1901... which
is not highly useful for things like timestamping database entries.

The good news is that all modern UNIX-like systems, and even the UNIX’s themselves, have long
ago switched to 64-bit time representations. But as we always see, there are surprising corners
of technology that are slow to update. So it’s entirely foreseeable that there will be some
breakage somewhere when we finally get to 2038, 14 years from now.

This specific clock is very cool and very nerdy, thus very appealing, since those 32 bits are
broken into four, 8-bit bytes with each of the 4 bytes determining the position of each of the
clock’s four hands. Since an 8-bit byte can have any one of 256 values, the clock has 256 “ticks”
around its face. And since trouble begins once the high-byte, represented by the red hand,

10

https://retr0.id/stuff/2038/
http://grc.sc/2038

reaches its half-way point, straight down, this graphic makes it very clear that we’re well on our
way toward the UNIX apocalypse.

I would dearly love to still be doing this podcast 14 years from now and to be able to cover and
discuss the events of the end of 32-bit UNIX time. I would not be surprised if some things break.

Norbert,

Bobiverse book #5 came out on Sept 5: "Not Till We Are Lost” Just want to let you know.
Thanks for the great postcase ! Norbert

Thanks Norbert! I know that the Bobiverse series has been a huge hit with our listeners, so I
wanted to share the news of book #5’s availability with everyone.

Exodus: The Archimedes Engine
The Bobiverse books were pretty easy to breeze through. But for anyone who's interested in

really sinking their teeth into something that promises to be far more substantial, our listener
Simon Zerafa sent me a note that one of this podcast’s favorite Sci-Fi authors, none other than
the great Peter F. Hamilton, is releasing his next novel next week. That’s the good news. What
may be bad news depending upon your need for more immediate closure, is that this is book
number one of a two-part novel series. In the past, as with, for example, Pandora’s Star which
left us hanging quite a while for story’s conclusion in “Judas Unchained”, and later it was the
same with Peter’'s Dreaming Void series, Peter is famous for laying down a lot — and I mean
really a lot — of foundation in his novels, so that things are finally really starting to move just as
the first novel is ending. That may not bother everyone, but it bugs the crap out of me. So I'm
sure I'll be waiting for the publication of the series’ conclusion because to purchase both books
so that I'm able to read them back to back.

The first book’s title is: "Exodus: The Archimedes Engine” and the synopsis, probably taken from
the back cover of the hardback, so just to give its reader a sense for what’s to come while not
being a spoiler, reads:

Forty thousand years ago, humanity fled a dying Earth. Traveling in massive arkships, these
brave pioneers spread out across the galaxy to find a new home. After traveling thousands of
light-years, one fleet of arkships arrived at Centauri, a dense cluster of stars with a vast array
of potentially habitable planets. The survivors of Earth signaled to the remaining arkships that
humanity had finally found its new home among the stars.

Thousands of years later, the Centauri Cluster has flourished. The original settlers have
evolved into advanced beings known as Celestials and divided themselves into powerful
Dominions. One of the most influential is that of the Crown Celestials, an alliance of five great
houses that controls vast areas of Centauri. As arkships continue to arrive, the remaining
humans and their descendants must fight for survival against overwhelming odds or be forced
into serving the Crown Dominion.

Okay. So it sounds as though this Crown Dominion is old and corrupt.

11

Among those yearning for a better life is Finn, for whom Earth is not a memory but merely a
footnote from humanity’s ancient history. Born on one of the Crown Dominion worlds, Finn has
known nothing but the repressive rule of the Celestials, though he dreams of the possibility of
boundless space beyond his home.

When another arkship from Earth, previously thought lost, unexpectedly arrives, Finn sees his
chance to embrace a greater destiny and become a Traveler—one of a group of brave heroes
dedicated to ensuring humanity’s future by journeying into the vast unknown of distant space.

Okay. So at this point this is not any sort of recommendation because I haven't yet read the
book. I am certain I'll read both book once they become available. But if anyone listening does
decide to jump on the first book knowing that they may be left with a classic Hamilton
cliffhanger, please DO send your review to me at “securitynow@grc.com” and I'll share what you
think without any spoilers.

Hadrian,

Hi Steve, Long time reader, then listener, then viewer. I recently bought SpinRite. Not yet
needed for recovery, but I now have a burning question: am I the only one who looks at the
raw data display and then suddenly says "Hey! I know which file that was!" ??

I got a kick out of Hadrian’s note because, though no one else has ever mentioned it specifically
that I can recall, I, too, will often see something I recognize flash past on SpinRite’s Real Time
Activities display. But SpinRite did not always show that. Back before mass storage drives were
able to manage their own defective sectors, SpinRite needed to and did handle all of that itself.
This meant that sectors embedded in clusters that had been found to be defective would need to
be relocated then replaced by good clusters. So that region of SpinRite’s Real Time Activities Ul
page once tracked all of those changes and showed totals by count and bytes of everything that
SpinRite had done. At some point, once all drives became able to handle defect relocation
autonomously, although SpinRite would still induce a drive to perform the relocation, now that
would happen below the level of the file system. So I was able to remove all of that logic from
SpinRite. That also meant that I needed to remove all of the tracking, totalling and displaying of
that work which SpinRite no longer needed to do. And that left a big empty display region in
SpinRite’s user interface. I decided to fill that hole with an updating snapshot of the data that
was passing by, so that SpinRite’s user could literally see the data that SpinRite was working on.
This has become one of SpinRite’s more popular user-interface features.

The final piece of feedback leads us nicely into this week’s topic.
The feedback was sent by a U.K. listener named Laura, who wrote:

Hi Steve, My name is Laura, from the UK. As I have a Masters degree in Cyber Security, I
came across this article and hope you would be interested in talking about this both for me
and everyone else.

12

mailto:securitynow@grc.com

I love the show and I'm so glad you are going past 999 as I have a standing appointment with
you and Leo every Tuesday night — that no-one is allowed to interrupt. (My ex tried.) I have
included the link below: https://cybersecuritynews.com/rambo-attack-air-gapped-systems

Thank you again, Laura (P.s Leo love the new attic)

13

https://cybersecuritynews.com/rambo-attack-air-gapped-systems/

RAMBO

Many of our listeners forwarded news to me of this latest side-channel attack brought to us by
none other than another clever researcher at Israel’s Ben-Gurion University of the Negev. It was
easy to see how much attention this latest bit of research drew, since the many links I received
from our listeners — and thank you all, by the way, for sending them - you all essentially voted
for this week’s topic — were from widespread cyber-security related publications. Before I dug
into what it was all about I was hoping that the reason for all the attention was not only because
the new attack was named "RAMBO” ... and I was not disappointed. So I decided that RAMBO
should be this week’s main discussion topic. And, also, everyone knows that I have a difficult
time ignoring access to the raw research. The worst case is having to decipher something that a
public relations person wrote. But in this case we have 18 pages of pure delicious research
written by the researcher Mordechai Guri, which explains his new attack in full detail.

The Abstract of Mordechai’s research says:

Air-gapped systems are physically separated from external networks, including the Internet.
This isolation is achieved by keeping the air-gap computers disconnected from wired or
wireless networks, preventing direct or remote communication with other devices or networks.
Air-gap measures may be used in sensitive environments where security and isolation are
critical to prevent private and confidential information leakage.

In this paper, we present an attack allowing adversaries to leak information from air-gapped
computers. We show that malware on a compromised computer can generate radio signals
from memory buses (RAM). Using software-generated radio signals, malware can encode
sensitive information such as files, images, keylogging, biometric information, and encryption
keys. With software-defined radio (SDR) hardware, and a simple off-the-shelf antenna, an
attacker can intercept transmitted raw radio signals from a distance. The signals can then be
decoded and translated back into binary information. We discuss the design and
implementation and present related work and evaluation results. This paper presents fast
modification methods to leak data from air-gapped computers at 1000 bits per second. Finally,
we propose countermeasures to mitigate this out-of-band air-gap threat.

The first thing I'll note is that while 1000 bits per second won’t allow you to send Windows, or
even a Windows update over the air, a modern state of the art cryptographic private key is only
several kilobits in length, so the keys to the kingdom could be broadcast from just such a
compromised machine, over and over, every few seconds. And since it would just appear as
random RF noise, no one would ever be the wiser. And unlike most malicious code whose
purpose is readily revealed through inspection, any code that’s being used to generate radio
signals from memory buses will just be puzzling for any forensics researchers. They’d stare at it
and scratch their heads and never have any idea what the heck such code was doing. They
couldn’t even ever be certain that it was doing anything malicious. It wouldn’t appear to be
doing anything at all since the designers of this code are using a far-fetched side effect of normal
data processing to get their message out of the machine.

The second thing to note is that one of the consequences of today’s heavy use of encryption is

that we’ve grown to rely upon it completely. What this means, practically, is that today we’re far
less worried about storing our sensitive encrypted data in far more accessible places - such as in

14

the ubiquitous cloud. "Who cares if it’s in the cloud. It’s encrypted, right?” Sure thing. That's
true, right up until the time someone figures out how to exfiltrate the comparatively tiny secret
key that’s protecting the otherwise far less secured data.

So my point is, thanks to the application of cryptography virtually everywhere today, we now
concentrate vastly more value into a handful of bits. So whereas 1000 bits per second cannot be
used to transfer a massive database, if those few thousand bits are the secret that’s protecting
a massive database in the cloud, then a few seconds worth of transmission is all that’s needed to
crack that database wide open.

Reminding us that air-gapping and air-gap exploits have a significant and deep history,
Mordechai explains:

Enforcing an air gap in a computing or networking environment involves physically and
logically isolating a system, network, or device from external networks or communication
channels. This can be done by disconnecting network cables, disabling wireless interfaces, and
disallowing USB connections. In addition, it must be ensured that the isolated system has no
direct link to any external communication infrastructure.

Despite air-gapped networks being considered highly secure, there have been incidents
demonstrating that air-gapped networks are not immune to breaches. Stuxnet is one of the
most famous air-gap malware. Discovered in 2010, Stuxnet was a highly sophisticated worm
that targeted industrial control systems (ICS), particularly those used in nuclear facilities. It
exploited zero-day vulnerabilities and used several methods, including infected USB drives, to
jump the air gap and spread it across isolated networks.

The Agent.BTZ worm was another type of air gap computer worm with advanced capabilities
and a targeted type. It was specifically designed to spread through removable media, such as
USB flash drives, and infiltrate computer networks, including those highly secure or
air-gapped. According to reports, the worm affected the U.S. Department of Defense classified
networks. Notably more than twenty-five reported malware in the past targeted highly secured
and air-gapped networks, including USBStealer, Agent.BTZ, Stuxnet, Fanny, MiniFlame, Flame,
Gauss, ProjectSauron, EZCheese, Emotional Simian, USB Thief, USBFerry, Retro, and Ramsay.

And then Mordechai discusses his new air-gapped attack:

In order to exfiltrate information from an infected air-gapped computer, attackers use special
communication channels known as air-gap covert channels. There are several types of covert
channels studied in the past twenty years. These attacks leak data through electromagnetic
emission, optical signals, acoustic noise, thermal changes , and even physical vibrations. In
this paper, we show how malware can manipulate RAM to generate radio signals at clock
frequencies. These signals are modified and encoded in a particular encoding allowing them to
be received from a distance away.

The attacker can encode sensitive information (keylogging, documents, images, biometric
information, etc.) and exfiltrate it via these radio signals. An attacker with appropriate
hardware can receive the electromagnetic signals, demodulate and decode the data, and
retrieve the exfiltrated information.

15

Attacks on air-gapped networks involve multi-phase strategies to breach isolated systems by
delivering specialized malware through physical media or insider agents, initiating malware
execution, propagating within the network, exfiltrating data using covert channels or
compromised removable media, establishing remote command and control, evading detection,
and covering tracks.

In the context of the RAMBO attack, the adversary must infect the air-gap network in the
initial phase. This can be done via a variety of attack vectors. An attacker could plant malware
on a USB drive and physically introduce it into an air-gapped network. An unsuspecting insider
or employee might connect the USB drive to a computer within the isolated network,
unknowingly activating the malware and allowing it to propagate and exfiltrate data through
the same USB drive or via covert channels. An insider with access to the air-gapped network
might intentionally introduce malware or provide unauthorized access to external parties. This
could involve transferring sensitive data to personal devices or using covert communication
methods like steganography to hide data within innocent-looking files. An attacker could also
compromise hardware components or software updates during the supply chain process.

I'll interrupt to note that the particular power of this attack is the degree to which its effects
would be unsuspected and undetected. So an adversary might introduce their RAMBO-enabled
malware into a device driver that’s known to be used by and needed by the targeted system.
Since no one would ever imagine that a device driver update could suddenly turn a PC into a
covert short-range transmitter, the updated drivers might be delivered as part of a very careful
and clean offline CD or DVD carried update. And that’s all that would be required. Mordechai
continues:

Once these components are installed within the air-gapped network, hidden malware might
activate and communicate with external parties. Note that APTs (Advanced Persistent Threats)
in the past have targeted highly secured and air-gapped networks. Recently, in August 2023,
researchers at Kaspersky discovered another new malware and attributed it to the cyber-
espionage group APT31, which targets air-gapped and isolated networks via infected USB
drives.

In the second phase of the attack, the attacker collects information, e.g., keylogging, files,
passwords, biometric data, and so on, and exfiltrates it via the air-gap covert channel.

In our case, the malware utilizes electromagnetic emissions from the RAM to modulate the
information and transmit it outward. A remote attacker with a radio receiver and antenna can
receive the information, demodulate it, and decode it into its original binary or textual
representation.

For the actual generation of RAMBO'’s RF signals, he explains:

When data is transferred through a RAM bus, it involves rapid voltage and current changes,
mainly in the Data bus. These voltage transitions create electromagnetic fields, which can
radiate electromagnetic energy through electromagnetic interference (EMI) or radio frequency
interference (RFI). The frequency range of electromagnetic emanation from the RAM bus
mainly depends on its specific clock speed, measured in megahertz (MHz) or gigahertz (GHz).
This clock dictates how quickly data can be transferred between the CPU and memory. The
emanation levels are influenced by other bus characteristics, including its data width, clock

16

speed, and overall architecture. Faster RAM buses such as DDR4 and DDR5 having wider data
paths can lead to quicker data transfers with increased emissions.

When data is read from or written to memory, electrical currents flow through the RAM chips
and the associated traces on the printed circuit board (PCB). These electrical currents generate
electromagnetic fields as a byproduct, which radiates EM energy. To create an EM covert
channel, the transmitter needs to modulate memory access patterns in a way that corresponds
to binary data. For instance, they could alter the timing or frequency of memory access
operations to encode information. The sender and receiver must establish rules that define
how memory access patterns translate to binary values. For example, reading or writing an
array to the physical memory with a specific timing interval might represent a ‘0’ while another
interval represents a ‘1. The receiver detects and decodes the EM emissions caused by the
modulated memory activity. This could involve sensitive radio frequency (RF) receivers or
electromagnetic field sensors.

One algorithm used OOK - On-Off Keying — modulation, a basic form of digital modulation
used in communication systems to transmit digital data over a carrier wave. In our case, the
OOK modulation involves turning the carrier wave on and off to represent binary data, where
the presence of the carrier wave generated by memory activity corresponds to one binary
state ("1"). The absence of the electromagnetic carrier wave (thread sleep()) corresponds to
the other binary state ("0"). Note that to maintain the activity in the RAM buses, we used the
MOVNTI instruction which stands for Move Non-Temporal Integer. It performs a non-temporal
store of integer data from a source operand to a destination memory location. This instruction
is primarily associated with optimizing memory operations for certain types of data transfers,
particularly in cases where the data is not to be reused immediately. For the beginning of the
transmission, we used the preamble sequence of 10101010, allowing the receiver to be
synchronized with the transmitter.

For the fast transmission, we used Manchester encoding. In this encoding, each bit of the
binary data is represented by a transition or change in signal level within a fixed period.
Manchester encoding ensures a consistent number of signal transitions, making it useful for
clock synchronization and error detection.

I smiled when I saw that Mordechai had chosen to use Manchester encoded signaling since it's
extremely simple and straightforward and it’s likely the best solution to his need. Manchester
encoding is still in wide use today due to its simplicity and robustness, though it dates back to
1948 where it was invented and first used to store and retrieve data on the magnetic storage
drum for the University of Manchester’s Mark 1 digital computer.

Because Manchester encoding provides such an elegant solution to a common problem - so
common that, as I noted, it’s still being used today in consumer IR remote controls and RFID
tags - and since it provides another interesting dip into pure communications engineering and
abstract computer science, I want to take some time to examine how it works.

17

The problem Manchester encoding beautifully solves is known as “clocking”. If you have a single
bit channel, as with RAMBO where we have a radio signal that’s either on or off, or a wire that’s
either carrying a current or not, or a remote control’s infra-red LED that’s either on or off, a
significant problem arises when a long series of some number of ‘1’s or '0’s occurs in a sequence
because the question quickly becomes, exactly how many 0’s or 1’s was that?

If some time passes without anything happening, for example, the radio is off or on for a while,
how is the receiver to know precisely how many bits were just transmitted? If the sender and
the receiver both had perfect and exactly equal knowledge of time passage, it would
theoretically be possible to just count the elapsed time between a change from On to Off or Off
to On, then divide that by the time per bit to determine exactly how many “bit times” had
elapsed. And the guys at Manchester may have initially tried that back in 1948. But in their case,
slight variations in the speed of their drum storage rotation rate would have quickly shown them
that they needed something system that would be far more tolerant of slight timing variations.
And even today, two clocks are never precisely synchronized nor are ever running at precisely
the same rate.

Communications designers have solved this problem by creating systems known as self-clocking
encoding. Self-clocking encoding systems ensure that something always happens often enough
for the receiving end to stay synchronized with the sending end, even if their timing is not
precise. And Manchester encoding, first used 76 years ago, does exactly that. Here’s how it
works:

The key to understanding any encoding is to recognize that the signal is no longer the data.
Mordechai mentioned simple on-off keying which is an unencoded system. With simple on-off
keying, the signal IS the data. But that’s where we run into trouble if many '0’s or ‘1’s are sent
in an uninterrupted sequence. So any encoding that we employ breaks this simple relationship
between the signal and the data.

To talk about this, we'll refer to the signal as being “low” or “high” whereas the data bits are a ‘0’
or a'l’. So “low” or “high” would mean that RAMBO’s RAM transmission is either off or on.

A ‘1’ data bit is encoded as a low followed by a high, whereas a ‘0’ bit is encoded as a high
followed by a low. In other words, RAMBO transmits a ‘1’ bit by having its RAM transmitter first
not transmitting anything, then having it transmit. And it sends a ‘0’ by having its RAM
transmitter first transmitting a signal, then switching it off and not sending any signal.

The best way to think of this is that in Manchester encoding a ‘1’ bit is encoded as a transition
from low to high whereas a ‘0’ bit is encoded as a transition from high to low. This means that
a so-called “bit cell” — which is the period of a single data bit — always contains two opposite
states, both a low and a high, and the direction of the transition between those two states is
that bit cell’s data — a 0 or a 1. If the bit cell contains a transition from low to high, radio off to
radio on, that's RAMBO sending a ‘1". And if the bit cell contains a transition from high to low,
that’s RAMBO sending a ‘0"

18

Now, if you think about this for a second you’ll see a problem. In order to send a pair of ‘1's we
need to have back-to-back low-to-high transitions - in other words, RAMBO radio off to RAMBO
radio on transitions. But at the end of that first bit the radio will be on and the next ‘1’ we're
sending requires the radio to start by being off. We solve this problem by completely ignoring
any inter-bitcell transitions. In other words, only the transitions occurring in the middle of bit
cells carry any data. The transitions occurring in between are ignored.

So now, assuming that you’'ve been following along carefully, you’re wondering how the receiver
can tell the difference between the data transitions occurring in the middle of the bit cells and
the transitions we’re supposed to ignore which may or may not occur in between bit cells in
order to get ready for the next bit. Manchester encoding provides that answer because every bit
cell must always contain a transition, whereas there may or may not be any transition in
between two bit cells.

If you doodle with a pencil and paper for a bit you'll quickly see that any receiver can perfectly
“lock onto” the location of the bit cells the very first time a transition is missing, since that can
only be the period in between bit cells. That means that the next transition must be in the exact
center of a bit cell as far as the transmitter is concerned.

So if the receiver knows only the approximate rate at which the transmitter is sending bits,
that’s now sufficient to allow it to judge when an inter-cell transition opportunity has passed and
when the next guaranteed-to-be-present transition occurs. And when that happens, the receiver
updates its self-clocking “lock” which prepares it to judge whether the next transition occurs
quickly, meaning that it's an inter-cell transition, or not until it's expecting the next data bit
transition.

This simple system works so well that it was used by the earliest Ethernet physical layer
standards and as I mentioned earlier, it’s still used today by consumer home entertainment

infra-red remote controls as well as by RFID and near-field communications.

Mordechai had considered both simple On/Off keying and Manchester encoding. He wrote:

Our analysis shows that the Manchester encoding is more relevant for the requirements of the
RAMBO covert channel due to two main reasons,; (1) the encoding aids in clock synchronization
between the sender and receiver, and (2) the frequent transitions make it easier to detect
errors caused by signal loss, interference, or distortion. However, it’s important to note that
Manchester encoding doubles the required bandwidth compared to direct on/off binary
encoding, as each bit requires two signal states within the bit interval.

Okay, so how did all of this turn out? Keylogging can be exfiltrated in real-time since UNICODE is
only 16 bits per keystroke. A 4096-bit RSA encryption key can be exfiltrated in 4.096 seconds
and biometric information and small files such as .JPGs and small documents require a few
seconds at the system’s fastest speeds.

They conclude that "This indicates that the RAMBO covert channel can be used to leak relatively
brief information over a short period.”

19

They were also able to receive this information at a distance of up to 700 centimeters. For those
of us who grew up using the Imperial system of measurement, 700 centimeters is 23 feet (!) So
this is a useful and impressive feat.

I would imagine that if you got yourself a well-tuned and well-aimed Pringles can, you might be
able to significantly improve on that performance distance. For at least this first round of
research, they seemed less focused upon distance than feasibility. They’ve certainly shown that
their RAMBO system is feasible.

It's been known for a long time that electronic devices generated and radiated electromagnetic
interference while they were in use. The somewhat strained acronym TEMPEST stands for
“Telecommunications Electronics Materials Protected from Emanating Spurious Transmissions.”
So, TEMPEST-hardened devices are those which incorporate specific countermeasures designed
to block or mask any useful information-carrying emanations from electronic equipment.

We can hope that any air-gapped machines which have been deliberately disconnected from any
traditional form of data communications will have also been shielded so that none of the noise
generated by the system’s motherboard is able to find its way into the surrounding environment.
It would be necessary, of course, to first infect any such machine with RAMBO technology
malware. But if that could be accomplished any otherwise unprotected machine could be turned
into a RAMBO transmitter.

20

