
Security Now! #808 - 03-02-21
CNAME Collusion

This week on Security Now!
This week we discuss a welcome change coming soon to the Chrome browser, and a welcome
evolution in last week's just released Firefox 86. We're going to look at questions surrounding
the source of the original intrusion into SolarWinds servers, and at a new severity-10
vulnerability affecting Rockwell Automation PLC controllers. We'll touch on VMware's current
trouble with exploitation of their vCenter management system, and I want to share a recent
code debugging experience I think our listeners will enjoy and find interesting. Then we're going
to conclude with some information about something that's been going on quietly out of sight and
under the covers which must be made as widely public among web technologists as possible.

Not exactly confidence inspiring...

Browser News
Chrome to default to trying HTTPS first when not specified.
I'm delighted to announce that the forthcoming Chrome v90, which is slated for release in
mid-April, will finally assume that any non-specific (or as Google terms it “schemeless”) URL is
meant to be “https://” before falling back to “http://”. As our listeners know, I've mentioned
often that it seems well past time for our web browsers to assume HTTPS rather than HTTP. It
appears that's going to happen. This will likely influence all of the other Chromium-based
browsers and we can expect Firefox and Safari to follow suit.

Last Wednesday, Google's Emily Stark tweeted: “if you're running Chrome Canary, Dev, or Beta
and you want some more https in your life, go to chrome://flags and search for
"#omnibox-default-typed-navigations-to-https". Chrome will then send schemeless hostnames
over https:// instead of http:// by default”

The next day, Emily followed-up Tweeting: “currently the plan is to run as an experiment for a
small % of users in Chrome 89, and launch fully in Chrome 90, if all goes according to plan.”

The current public-channel release is #88. And I checked, 88 doesn't yet have that option, which
89 will. A test percentage of unwitting Chrome 89 users will have that turned on for them. And
assuming that nothing big blows up, Google intends to turn this on for everyone in about six
weeks. But once the next release, v89, shows up, we can all turn it on for ourselves.

Firefox's “Enhanced Tracking Protection” just neutered 3rd-party cookies!
It seems that this week my web browser wish list is getting some long overdue attention.
Mozilla just announced that with the recently released Firefox 86, the long-running abuse of
3rd-party cookies would finally be 86'd.

As I've long lamented, the use of 3rd-party offsite cookies for tracking was never part of the
plan. Netscape invented first party cookies in order to implement a simple session maintenance
mechanism which, for the first time, enabled the concept of a user logging into a website and
then being known as they moved about. It amounted to them being tracked as they moved
about the site, but being a 1st-party cookie, it only worked for that one site. What was never
intended was that 3rd-party advertisers or dark and unseen analytics providers, or Google
Analytics, would insinuate themselves pervasively throughout the web and employ their own
cookies for tagging and tracking the activities of individual users. But as we know, what can be
done will be done and tracking is what resulted.

https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/

With the release of Firefox 86, that just ended. At the top of their “total cookie protection”
announcement, Mozilla wrote:

“Today we are pleased to announce Total Cookie Protection, a major privacy advance in Firefox
built into ETP Strict Mode. Total Cookie Protection confines cookies to the site where they were
created, which prevents tracking companies from using these cookies to track your browsing
from site to site.”

Security Now! #808 1

https://blog.mozilla.org/security/2021/02/23/total-cookie-protection/

In other words, 3rd-party cookies are not blocked. But they are stovepiped. Assuming that
3rd-party cookies are enabled at all, any 3rd-party entity may give the user’s browser its cookie.
But now Firefox will associate the 3rd-party cookie it received with the website where the user
was when that cookie was received. The two will be paired. If the user returns to the same site,
that 3rd party cookie will be returned to the 3rd party site. But if the user visits a different site
with content — an advertisement or tracking code — from that same 3rd-party site, because the
user is visiting a different website, there will be no 3rd party cookie associated with the visited
site. So cross-site tracking will be defeated.

If we wanted to use some highfalutin’ language to describe this, we would say that Mozilla has
segmented their browser cookie namespace, creating individual cookie namespaces for each
website.

This is a wonderful compromise between allowing and refusing all 3rd-party cookies. 3rd-party
cookies are still allowed, but they will only be returned by the same site where they were set.

We know that the pressure to track is significant even though when it really does work it is
frequently reported as unnerving when some recent activity somewhere turns up in an
advertisement elsewhere a few minutes later. So, big props to Mozilla for adding this welcome
and long overdue feature to Firefox.

Security News
As easy as “SolarWinds123”
As we know, post-network intrusion forensics is always difficult. But the previous SolarWinds
CEO Kevin Thompson says it may have all started when an intern set an important password to
“'solarwinds123.” Then, adding insult to injury, the intern shared the password on GitHub.

Kevin Thompson told a joint US House of Representatives Oversight and Homeland Security
Committees hearing that the password was “a mistake that an intern made. They violated our
password policies and they posted that password on their own private Github account. As soon
as it was identified and brought to the attention of my security team, they took that down.”

However, Kevin’s responsible-as-possible sounding testimony was contradicted by SolarWinds’
current CEO Sudhakar Ramakrishna who confessed that the password “solarwinds123” was in
use by 2017. Vinoth Kumar, the security researcher who discovered the leaked password to one
of SolarWind’s file servers had earlier stated that SolarWinds did not change the password until
November of 2019, after he had discovered it on the Internet and reported it.

The insecure password is one of three possible avenues of attack SolarWinds has been
investigating as it tries to determine how it was first compromised by the hackers. The two other
theories are the brute-force guessing of company passwords, as well as the possibility the
hackers could have entered via compromised third-party software.

In other words, we don’t know for sure, and since post-intrusion forensics is difficult, we might
never be certain. But publicly posting a private password on Github is certainly not the way to
keep it a secret.

Security Now! #808 2

Rockwell Automation's CVE-2021-22681 is a CRITICAL 10 out of 10
The security of nearly all of Rockwell Automation's “PLC”s — Programmable Logic Controllers —
are affected by the use of a single globally shared static encryption key. Yes... Every one of the
hundreds of thousands of their systems in the world is “protected” by the same single key.

A Programmable Logic Controller fills an important gap within any process control system. You
might be on an oil rig where the pressure of a feeder line must be maintained within a range.
But the pressure might need to be taken at several places and averaged. And there might be
multiple upstream sources of pressure controlled by valves with actuators. So, in a sense, it's a
closed system with a handful of inputs and outputs. And once its function is defined it can and
should just be left alone to work. But how do you build the control system? Once upon a time,
before computers, a custom circuit would have been created and built from scratch. Today, you
go over to Rockwell Automation's website and pick the PLC — the Programmable Logic Controller
— that's just big enough to handle the number and types of inputs and outputs that you need.
Then an engineer who's been trained up, uses Rockwell's software, called Studio 5000 Logix
Designer to program the little computer that resides inside the industrial oil-rig tough little box.

So a PLC does a limited set of very specific things. Once upon a time it might have been done
with discrete circuitry. A bunch of clacking relays all wired together to implement the sequencing
logic required to route vials of newly synthesized vaccine though their carousel, to count them as
they pass and to flip routing gates open and closed at the exact time to fill the waiting
containers. But today, all of that is handled by an unseen Rockwell Automation PLC. It's
programmed once and it effectively becomes a part of the overall machine.

In any industrial setting where things are moving, spinning, whirring, valves are opening and
closing and stuff's happening, there are tasks that don't require a general purpose computer.
And God knows you sure don't want Windows anywhere near any of that. Sure, Windows hosts
Rockwell's Studio 5000 Logix Designer. But once the PLC device is programmed, it's blessedly off
on its own.

So everything would be great with these work-a-day PLCs. But apparently some Bozo decided
that needing to go down to the shop floor to tweak the controller of the machine that squeezes
bottle caps onto coke bottles was too much to ask. So... let's put it on the network! Believe it or
not, these perfect little happy worker controllers have received IP addresses — stop me if you've
heard this one before. What could possibly go wrong. And yes, as I mentioned above, not only
do they have IP addresses, often with public presences on the Internet, but they are all being
protected by the same, now well known cryptographic key.

Last Thursday, the US CISA warned of a critical vulnerability (remember: a 10 out of 10) that
allows hackers to remotely connect to Logix controllers and from there alter their configuration
or application code. CISA stated that the vulnerability requires a low skill level for exploitation.
They explained:

“The vulnerability, tracked as CVE-2021-22681, is the result of the Studio
5000 Logix Designer software making it possible for hackers to extract a secret encryption key.
This key is hard-coded into both Logix [PLC] controllers and engineering stations and verifies
communication between the two devices. A hacker who obtained the key could then mimic an
engineering workstation and manipulate PLC code or configurations that directly impact a
manufacturing process.”

Security Now! #808 3

VMware's vCenter troubles
Meanwhile, hackers are mass-scanning the Internet in search of VMware servers with a newly
disclosed code-execution vulnerability carrying a severity rating of 9.8 out of 10.

CVE-2021-21972, as the security flaw is tracked, is a remote code-execution vulnerability in
VMware vCenter server. vCenter is an application for Windows or Linux used by admins to
enable and manage virtualization of large networks. Within a day of VMware issuing a patch,
proof-of-concept exploits appeared from at least six different sources. The severity of the
vulnerability, combined with the availability of working exploits for both Windows and Linux
machines, sent hackers scrambling to actively find vulnerable servers.

Troy Mursch, a researcher with Bad Packets wrote: “We’ve detected mass scanning activity
targeting vulnerable VMware vCenter servers.” Troy said that the BinaryEdge search engine
found almost 15,000 vCenter servers exposed to the Internet, while Shodan searches revealed
about 6,700. The mass scanning is aiming at identifying servers that have not yet installed the
patch

The flaw is just about as bad as it gets. It allows a hacker with no authorization to upload files to
vulnerable vCenter servers that are publicly accessible over port 443. Successful exploits will
result in hackers gaining unfettered remote code-execution privileges in the underlying operating
system. The vulnerability stems from a lack of authentication in the vRealize Operations plugin,
which is installed by default.

https://www.ptsecurity.com/ww-en/about/news/vmware-fixes-dangerous-vulnerabilities-that-thr
eaten-many-large-companies/

In their blog posting, Positive Technologies, who discovered and privately reported the flaw to
VMware wrote:

“In our opinion, the RCE vulnerability in the vCenter Server can pose no less a threat than the
infamous vulnerability in Citrix (CVE-2019-19781) [which was implicated in the ransomware
attacks on hospitals back in 2019] The error allows an unauthorized user to send a specially
crafted request, which will later give them the opportunity to execute arbitrary commands on
the server. After receiving such an opportunity, the attacker can develop this attack,
successfully move through the corporate network, and gain access to the data stored in the
attacked system (such as information about virtual machines and system users). If the
vulnerable software can be accessed from the Internet, this will allow an external attacker to
penetrate the company’s external perimeter and also gain access to sensitive data. Once
again, I would like to note that this vulnerability is dangerous, as it can be used by any
unauthorized user.”

Security Now! #808 4

https://www.ptsecurity.com/ww-en/about/news/vmware-fixes-dangerous-vulnerabilities-that-threaten-many-large-companies/
https://www.ptsecurity.com/ww-en/about/news/vmware-fixes-dangerous-vulnerabilities-that-threaten-many-large-companies/

SpinRite
Last week I mentioned that one troublesome machine owned by a tester in Germany was again
causing my new code some trouble. Back in the earlier ReadSpeed benchmark development
days, I was worried about wearing out my welcome with this tester by producing a series of test
releases in what was ultimately a futile attempt to zero-in on the trouble and fix it. Then,
miraculously, his system began working. That always makes me nervous, because if you didn’t
really do something to fix the problem, the “miracle” might choose to reverse itself at any point.
And, sure enough, when I moved the new code into SpinRite and released the first test releases
of it... it no longer worked on his system.

I had purchased one of the same very old Gigabyte motherboards from eBay and have been
extremely anxious to figure out exactly what’s going on. That finally happened this past week.
And I thought I’d give our listeners a peek into this little micro-drama, because it demonstrates
a bit about the process of debugging code and serves as a beautiful example of the weird sorts
of things we face in the real world, where code born in the lab actually needs to function. As it
turns out, I could have never figured this out remotely, because even with the machine sitting
right in front of me, what I was seeing made absolutely no sense.

The problem was occurring in a simple routine to copy the contents of a disk sector buffer from
high XMS memory above one megabyte down into traditional x86 segmented memory below one
megabyte. Should be a piece of cake. But the machine went into that subroutine and it never
came out. So, okay, at least now I had apparently located the location of the problem that Chris
and this machine was having. So I fired-up my debugger, and I followed the processor into that
simple subroutine.

As we’ve talked about a lot, one of the reasons I find the Intel chips enjoyable to program is that
they have a CISC — Complex Instruction Set Computer — architecture. The ultimate example of
a CISC ISA (Instruction Set Architecture) was the DEC PDP-11 and VAX machines. They were
designed at a time when a lot of code was still being written in their assembly language and
when compiler design was still a nascent art. So the ships themselves presented a sort of high
level language.

For example, the Intel x86 architecture includes a byte range copy instruction that no
self-respecting RISC chip would ever abide. The starting address of the source range is placed
into the chip’s SI register — SI stands for source index. And the starting address of the
destination range is placed into the chip’s DI register, with DI standing for destination index. The
number of bytes to copy is placed into the CX register (‘C’ as in count). Then a single instruction
is executed to cause the heavily microcoded Intel chip (or in this case AMD processor) to fetch a
byte from where the SI register points, store it to where the DI register points, increment both
SI and DI registers so that they will now each be pointing to the next byte in their ranges, then
decrement the CX register. If the CX register has not just been decremented to 0, copy the next
byte... and so on.

I’m explaining all this because as I single-stepped the processor, instruction by instruction, when
I stepped into that byte range copy instruction, nothing happened. It was as if the instruction
was taking forever to execute. One of the tricks we all learned back in the early days of the PC,
when a system appeared to lock up, was to toggle NumLock on our keyboards by hitting that

Security Now! #808 5

key a few times. If the keyboard’s NumLock light toggles on and off, you knew that the system
was kinda still alive. There was still some hope. It wasn’t hard locked. Typically, if NumLock was
dead, not even the famous CTRL-ALT-DEL three finger salute would work, and only the reset
button would get things restarted.

In this case, NumLock was still toggling. And Chris had originally noted that the little ASCII
character “spinners” on the screen kept spinning. That meant that the system was not locked
up. In order for NumLock to toggle and for the spinners to spin, keyboard hardware interrupts
and clock interrupts need to be serviced. So the processor was still running. But it was also
apparently just sitting at that single instruction doing nothing. The Intel chips have some built-in
debugging support. And this debugger works by setting a hardware breakpoint on the instruction
after the one that’s about to be single-stepped through. That way, when the processor comes
out the other side of the instruction control returns to the debugger, the screen is updated to
show the current processor state, and you can see where you are. But that breakpoint was never
being tripped because the AMD Phenom II processor was never stepping out of that instruction
to the next one.

So, I stared at that for a while thinking — what?!. It made no sense. This HAD to work. I think
I mentioned last week that Chris had observed that everything worked just dandy if he booted
from a diskette, but not when he booted from a USB thumb drive. In my subsequent
experimentation before rolling up my sleeves, I learned that all was also okay when booted from
any main mass storage device. And in subsequent testing I determined that it wasn’t actually
what booted the machine, but from where the program was run. In other words, this instruction
would hang if I booted from hard drive but then ran the code from a USB thumbdrive. Yet
everyone else who’s been testing this code all along is also typically booting and running the
code from USB. Yet, no one else is seeing this problem... which was really not surprising since
this problem could not possibly be happening in the first place. But, yet, it was.

So, because what I was seeing was impossible, I decided to decompose the fancy
single-instruction Intel block copy into a series of individual instructions that would accomplish
the same thing. Again, I single-stepped, and again the system hung at one super-simple
instruction: When the processor attempted to load the accumulator register with the contents of
the location in upper memory, that instruction never completed… but also only when the code
was run from USB. And DOS is not loading anything on-the-fly. It’s old school. It loads
everything into RAM before anything runs. After which it doesn’t know or care where the code
came from. So I have no idea why running from USB could possibly matter.

The only thing I can conclude is that there’s a subtle bug in that old AMD Phenom II processor.
The Intel x86 architecture provides six segmentation registers. I was using the default, which is
DS — which stands for Data Segment. So, in a Hail Mary, I changed the code to use the FS
segment register... and everything worked perfectly every time. So, henceforth, none of
SpinRite code will set DS to zero and attempt to use it to access 32-bit flat memory storage.
That SHOULD work, and it does work as far as we know, everywhere except on a Gigabyte
motherboard with an AMD Phenom II processor when the code is loaded from USB. Welcome to
my world.

When I published a test release for Chris to try — and also to check my own sanity — it did,
indeed, fix his trouble, too. And someone else who had never reported in, but who had been

Security Now! #808 6

watching, wrote to say that his similar AMD Phenom II based Gigabyte system had also never
worked before... but it does now.

I thought our listeners might get a kick out of a peek inside a bit of last week’s work. Most
problems that I track down and resolve teach me something I didn’t know. That’s what makes
the journey so interesting. I can’t say that for this problem, but I have learned something not to
do in the name of achieving total compatibility.

Once upon a time, back in 2004 when SpinRite 6.0 was released, one of the reasons it
developed such a strong following was that it just always worked. I’m now in the process of
wrestling this new and soon-to-emerge SpinRite v6.1 back into this state. When I am finished
with it, it will always work.

CNAME Collusion
So, Criteo, a leading tracking company, sends website administrators, with whom they already
have a tracking and analytics relationship, an e-mail. It asks them to make a quick change which
will “only take 2 minutes” and it will “adapt their website to the evolution of browsers.” Which is
to say that it will work around their own website’s visitors’ attempts to block tracking
to re-enable tracking of their site's visitors in a “more optimal way”.

After presenting instructions for the site’s webmaster about how to make the required change —
which will, indeed, only require a couple of minutes, in the particular instance of e-mail that I
saw, they conclude with: “If this is not done, you may lose 11.64% of your sales, 11.53% of
your gross turnover, and 20.82% of your audience.”

And this brings us to some recently published research which explores just how prevalent and
pervasive this new technique has grown over the past few years. The group of five researchers
will be presenting their work at the 21st Privacy Enhancing Technologies Symposium (PETS
2021) this July. But we have it now: https://arxiv.org/pdf/2102.09301.pdf

The abstract of their 21-page paper sets up the situation:

Abstract: Online tracking is a whack-a-mole game between trackers who build and monetize
behavioral user profiles through intrusive data collection, and anti-tracking mechanisms,
deployed as a browser extension, built-in to the browser, or as a DNS resolver. As a response
to pervasive and opaque online tracking, more and more users adopt anti-tracking tools to
preserve their privacy. Consequently, as the information that trackers can gather on users is
being curbed, some trackers are looking for ways to evade these tracking counter-measures.
In this paper we report on a large-scale longitudinal evaluation of an anti-tracking evasion
scheme that leverages CNAME records to include tracker resources in a same-site context,
effectively bypassing anti-tracking measures that use fixed hostname-based block lists. Using

Security Now! #808 7

https://arxiv.org/pdf/2102.09301.pdf

historical HTTP Archive data we find that this tracking scheme is rapidly gaining traction,
especially among high-traffic websites. Furthermore, we report on several privacy and security
issues inherent to the technical setup of CNAME-based tracking that we detected through a
combination of automated and manual analyses. We find that some trackers are using the
technique against the Safari browser, which is known to include strict anti-tracking
configurations. Our findings show that websites using CNAME trackers must take extra
precautions to avoid leaking sensitive information to third parties.

Okay... So, first of all, what are CNAME records? They are not something we’ve had the
occasion to talk about in the past. But DNS, by comparison, is something we're pretty much
always talking about. A CNAME record is simply another type of DNS record.

A DNS "A" record resolves a specific domain name to a “dotted quad” IPv4 address. A DNS
"AAAA" record resolves a specific domain name to an IPv6 address. An SMTP eMail server might
query a domain like grc.com for any MX records which will provide one or more IP addresses of
eMail servers for that domain. And for various reasons, a domain's TXT records might be queried
for information — like to provide the public key used to check a domains anti-spam signatures.
So, although DNS's primary purpose is to lookup and return IP addresses, it's also a nifty
general purpose distributed Internet directory capable of containing and returning all sorts of
other information. And, another of those types of queries is the CNAME.

CNAME stands for Canonical Name. Whereas an "A" query returns an IPv4 address, a CNAME
query returns another domain name. The domain name being queried is considered to be an
alias, and what's returned is the canonical name for that alias.

CNAME records are handled specially by DNS. As Wikipedia explains:

CNAME records are handled specially in the domain name system, and have several
restrictions on their use. When a DNS resolver encounters a CNAME record while looking for a
regular resource record, it will restart the query using the canonical name instead of the
original name. The canonical name that a CNAME record points to can be anywhere in the
DNS, whether local or on a remote server in a different DNS zone.

So here's what's evil, and what that eMail above was asking website admins to do: They were
asking, say, “example.com” to place a CNAME record into their site's DNS such that some
arbitrary, but specified, subdomain of example.com, like say, "
“dyzxrdb.example.com” would be an alias for the canonical name web-trackers-R-us.com.

So what that does, exactly, is anytime someone wants to lookup the IP address for
“dyzxrdb.example.com”, their assigned DNS resolver which is performing the DNS resolution for
them, will query the example.com domain's nameservers for that subdomain. But because that
subdomain record is a CNAME record, that's what will be returned to the querying DNS resolver.
It's essentially being told: if you want “dyzxrdb.example.com”, it's actually located at the
following domain name... in other words, at web-trackers-R-us.com. Whereupon the user's DNS
resolver asks web-trackers-R-us.com for their IP address and returns that to the original
querying user.

Security Now! #808 8

From the user's perspective, they asked for the IP of a subdomain of example.com. And they
received an IP. But due to prior collusion between the website they're visiting and
web-trackers-R-us.com, the IP they received was for web-trackers-R-us.com. From the
standpoint of the user's web browser, this is an "in domain" same-domain query, so 3rd-party
cookie restrictions do not apply and the user's web browser will treat this query as a subdomain
of the website being visited.

Okay.

So what we have so far, is a horrifically sneaky means of deliberately overriding a user's wishes
for anti-tracking by websites that feel that they have a superior right to track and obtain
leverage from their visitors.

But, believe it or not, it gets much worse... and you're not going to believe this:

Cookies set on specific domains are accessible to, and sent to, anyone who queries their
subdomains. This means that by colluding in this way to allow an untrustworthy 3rd-party
tracking entity to pretend to be within a website's domain, the cookies being held by the browser
of visitors to that site will be leaked to that 3rd-party entity because the web browser won't
know any better. That website's visitors' logon session authentication cookies will be sent
outside of that domain to untrusted and, I would argue, untrustworthy, 3rd party tracking and
analytics companies. The fact that it’s done over HTTPS provides no security. Anyone at any of
those tracking, advertising, analytics firms — of which 13 have been identified so far by the
researchers — could trivially impersonate any user of any website who didn’t explicitly logoff,
and who therefore has a still-valid authentication cookie. It's an unbelievable breach of trust
and abuse of web technology.

I ran across a wonderful website that allows us to play with and explore our own browser's
cookie and subdomain handling for understanding exactly this issue. I've made it this week’s
Security Now podcast shortcut of the week, so it's <https://grc.sc/808>

<https://scripts.cmbuckley.co.uk/cookies.php>

I'm running Firefox 86 with its full “Total Cookie Protection” enabled and it's not blocking any of
this leakage because these are not 3rd-party cookies. These are sneaky subdomain cookies.

So how widespread is this? Thankfully, these researchers have gone to some effort to unearth
the extent of this currently spreading industry-wide website collusion with the tracking industry.
It's not difficult. You just resolve any subdomains of the primary domain that you receive from a
website. You do the DNS lookup for yourself as if you were a recursive DNS resolver, and you
see whether you receive a CNAME record that points to any one of the 13 current providers of
this form of CNAME tracking.

The researchers found this technique currently in use on a total of 10,474 websites. And of the
top 10,000 websites overall, 9.98% — 1 in 10 — of those top 10,000 are currently employing
this form of CNAME tracking, cloaking, subdomain collusion.

Security Now! #808 9

https://grc.sc/808
https://scripts.cmbuckley.co.uk/cookies.php

And their research observed what they termed a “targeted treatment of Apple's Safari web
browser” where the advertising technology company Criteo (who mailed the letter I opened
with) switched specifically to CNAME cloaking to bypass Safari's otherwise strong privacy
protections.

And as for data leaks? Significant cookie data leaks were found on 95% of the sites that used
CNAME tracking, all of which sent cookies containing private information such as full names,
locations, email addresses, and even session authentication cookies to trackers of other domains
without the user have any knowledge or control.

The entire presumption of cookies is that, bad and abuse-prone as they may be, at least they
stay within the domain that set them. At least their content, whatever it might be — even if it’s a
user’s actual name and real world identity, bad practice as that would be — at least it remains
between those two parties. So while cookies can be used for tracking, the only data that is ever
returned to a domain is something that that domain earlier sent. Thus, by definition it’s not
secret to that domain.

But now, thanks to the horrendous abuse of CNAMEs being used to deliberately confuse cookie
domains, data is being sent with queries by user’s web browsers to entities who never set that
data in the first place. As the researchers noted, that data which should never be exposed to any
third party, often contains information that tracking firms would die to have, and leverage. But
now they don’t have to. They just need to get websites to collude with them by adding a CNAME
record to that domain’s DNS.

The only good news here is that good old Gorhill’s uBlock Origin add-on is at least partially
effective at spotting and blocking accesses to these despicable subdomains:

Security Now! #808 10

The #1 worst offender by far, which is infecting 5,993 detected websites is “Pardot”, a
SalesForce company which bills itself as “Powerful B2B Marketing Automation” stating that
“Pardot offers powerful marketing automation to help marketing and sales teams find and
nurture the best leads, close more deals, and maximize ROI.”

Number two on the hit list is Adobe Experience Cloud, and the good news is, uBlock Origin
blocks them both. But in a note on this table the researchers observe that Pardot is being
blocked because the 3rd-party script being sourced from pardot.com is blocked, and that if that
script was not blocked then CNAME abuse would succeed.

The researchers had the following to say about CNAME Countermeasures:

Countermeasures

In response to a report that a tracker was using CNAMEs to circumvent privacy blocklists,
uBlock Origin released an update for its Firefox version that thwarts CNAME cloaking. The
extension blocks requests to CNAME trackers by resolving the domain names using the
[browser's own] browser.dns.resolve API method to obtain the last CNAME record (if any)
before each request is sent. Subsequently, the extension checks whether the domain name
matches any of the rules in its blocklists, and blocks requests with matching domains while
adding the outcome to a local cache.

Although uBlock Origin also has a version for Chromium-based browsers, the same defense
cannot be applied because Chromium-based browser extensions do not have access to an API
to perform DNS queries. As such, at the time of this writing, it is technically impossible for
these extensions to block requests to trackers that leverage CNAME records to avoid detection.
uBlock Origin for Chrome, which does not have an explicit defense for CNAME-based tracking,
still manages to block several trackers. This is because the requests to the trackers matched
an entry of the blocklist with a URL pattern that did not consider the hostname. Unfortunately,
it is fairly straightforward for the tracker to circumvent such a fixed rule-based measure, e.g.
by randomizing the path of the tracking script and analytics endpoint, as is evidenced by the
various trackers that could only be blocked by the uBlock Origin version on Firefox.

And the researchers wrap up their research with the following conclusion:

Our research sheds light on the emerging ecosystem of CNAME-based tracking, a tracking
scheme that takes advantage of a DNS-based cloaking technique to evade tracking
countermeasures. Using HTTP Archive data
and a novel method, we performed a longitudinal analysis of the CNAME-based tracking
ecosystem using crawl data of 5.6M web pages. Our findings show that unlike other trackers
with similar scale, CNAME-based trackers are becoming increasingly popular, and are mostly
used to supplement “typical” third-party tracking services.

We evaluated the privacy and security threats that are caused by including CNAME trackers in
a same-site context. Through manual analysis we found that sensitive information such as
email addresses and authentication cookies leak to CNAME trackers on sites where users can
create accounts. Furthermore, we performed an automated analysis of cookie leaks to CNAME
trackers and found that cookies set by other parties leak to CNAME trackers on 95% of the
websites that we studied.

Security Now! #808 11

Finally we identified two major web security vulnerabilities that CNAME trackers caused. We
disclosed the vulnerabilities to the respective parties and have worked with them to mitigate
the issues. We hope that our research helps with addressing the security and privacy issues
that we highlighted, and inform development of countermeasures and policy making with
regard to online privacy and tracking.

So what we have here is a real mess. No form of explicit tracking was EVER designed into our
use of the web. It happened as an unintended consequence of single advertising services having
an appearance on multiple hosting websites. And those providers were allowed to set cookies in
our browsers just like their originally-intended first party cousins. We should have stopped it
then. We should have just said no. But the trouble was, this tracking was effectively invisible. It
went completely unseen by the public. But it wasn’t the public’s just to stop it. It was
technologists’ job to say no and stop it. But that didn’t happen.

Then, when an awareness began to emerge, and 3rd-party cookies were being threatened and
sometimes disabled or deleted, browser fingerprinting emerged as a means for allowing what
had grown into a tracking industry to retain its grip on our browsers and on us.

Since fingerprinting was more difficult to defend than cookies, it received a stronger pushback
from browser vendors who didn’t like the idea that cookies were being bypassed as a means of
tracking their users.

And now we have what is perhaps the ultimate abuse in tracking technology: Thanks to explicit
collusion among a growing number of websites, third parties are being allowed to receive a
website’s cookies — apparently without the website knowing or caring. Our logged-in session
authentication cookies are being received by 3rd party tracking entities with whom users have
no relationship; and with whom they would surely refuse to share their logon session and
various other possibly personal details if they were made aware of what the technology they are
using was doing behind their backs.

As with the original abuse of third party cookies, where all of this began, it cannot be the
responsibility of those who do not understand this, to say no. People just use the technology we
give them. It MUST BE the responsibility of those who DO understand this to push back in every
way possible.

I am SO glad that this research has shined a bright light on this next-generation tracking
practice. It needs to be shut down immediately. But it takes technologists knowing about it for
that to happen. Today, more do. And still more will, soon.

Security Now! #808 12

